
GEODESY AND CARTOGRAPHY c© Polish Academy of Sciences
Vol. 60, No 2, 2011, pp. 145-159

Conversion between Cartesian and geodetic coordinates
on a rotational ellipsoid by solving a system of nonlinear equations

Marcin Ligas, Piotr Banasik
Department of Geomatics

AGH University of Science and Technology
30 Mickiewicza Al., 30-059 Krakow, Poland

e-mail: ligas@agh.edu.pl, pbanasik@agh.edu.pl

Received: 6 April 2011 /Accepted: 13 October 2011

Abstract: A new method to transform from Cartesian to geodetic coordinates is presented.
It is based on the solution of a system of nonlinear equations with respect to the coordi-
nates of the point projected onto the ellipsoid along the normal. Newton’s method and a
modification of Newton’s method were applied to give third-order convergence. The method
developed was compared to some well known iterative techniques. All methods were tested
on three ellipsoidal height ranges: namely, (-10 – 10 km) (terrestrial), (20 – 1000 km), and
(1000 – 36000 km) (satellite). One iteration of the presented method, implemented with
the third-order convergence modified Newton’s method, is necessary to obtain a satisfactory
level of accuracy for the geodetic latitude (σϕ < 0.0004”) and height (σh < 10−6 km, i.e.
less than a millimetre) for all the heights tested. The method is slightly slower than the
method of Fukushima (2006) and Fukushima’s (1999) fast implementation of Bowring’s
(1976) method.

Keywords: Cartesian and geodetic coordinates, rotational ellipsoid, Newton’s method,
coordinate transformation

1. Introduction

Transformation from Cartesian coordinates (x, y, z) to geodetic (ellipsoidal) coordinates
(ϕ, λ, h) is one of the basic tasks in computational geodesy. It is used for location of both
ground objects as well as moving objects in outer space. The problem of the conversion
from Cartesian to geodetic coordinates was discussed by many authors; their list may
be found in Featherstone and Claessens (2008) and it still attracts interest. Solutions
to the problem are either approximate or exact, characterized by different approaches:
from transforming formulae (1) (Heiskanen and Moritz, 1967); introducing additional
parameters, e.g. parametric latitude (Borkowski, 1987, 1989; Fukushima, 1999, 2006;
Vermeille, 2002, 2004), minimizing the distance between a point in space and its
projection on the ellipsoid (Hedgley, 1976) as well as vector methods (Lin and Wang,
1995; Feltens, 2009), and also proposing the use of h-geometry (Zanevicius and Kersys,
2010).

bielecka
Tekst maszynowy
DOI No 10.2478/v10277-012-0013-x

146 Marcin Ligas, Piotr Banasik

Formulae relating 3D Cartesian coordinates to geodetic coordinates may be expres-
sed as follows.

For points inside/outside the ellipsoid



xG

yG

zG

 =



(N + h) cosϕ cos λ
(N + h) cosϕ sin λ[(
1 − e2

)
N + h

]
sin ϕ

 (1)

while for points on the surface of the ellipsoid



xE

yE

zE

 =



N cosϕ cos λ
N cosϕ sin λ[(
1 − e2

)
N
]
sin ϕ

 (2)

where
xG, yG, zG – Cartesian coordinates of a point outside/inside the ellipsoid,
xE , yE , zE – Cartesian coordinates of a point on the ellipsoid,
ϕ, λ, h – geodetic coordinates: latitude, longitude and ellipsoidal height, respecti-

vely,
a, b – semi-major and semi-minor axes of the ellipsoid, respectively,
N – radius of curvature in the prime vertical

N =
a√

1 − e2 sin2 ϕ

=
a2

√
a2 cos2 ϕ + b2 sin2 ϕ

e2 – first eccentricity squared

e2 = 1 −
(
b
a

)2

As may be seen from Eqs. (1) and (2) the transformation from geodetic to Cartesian
coordinates is straightforward. On the other hand, the inverse transformation, which is
the subject of this paper, is not so simple. Geodetic longitude is the exception and may
simply be expressed as

λ = arctan
yG

xG
(3)

However, Vanicek and Krakiwsky (1982) and Vermeille (2004), respectively, give more
stable variants for the longitude, i.e.

λ = 2 arctan
yG

xG +

√
x2
G + y2

G

(4)

Conversion between Cartesian and geodetic coordinates... 147

or

λ =



π

2
− 2 arctan

xG√
x2
G + y2

G + yG

, for yG > 0

−π
2

+ 2 arctan
xG√

x2
G + y2

G − yG

, for yG < 0
(5)

A method of conversion presented in this paper is based on vector calculus and
consists of two steps. The first step is to find the point on the surface of the ellipsoid (or
the meridian ellipse) being the projection of a point h distance away (outside/inside/on)
from the ellipsoid along the ellipsoidal surface normal (Fig. 1). The second step –
computing the geodetic latitude and height – is straightforward. The proposed solution
is most similar to that of Lin and Wang’s (1995), but in this presentation the problem
is solved with respect to coordinates of the point on the ellipsoid (or meridian ellipse
that is a section of rotational ellipsoid through its axis of revolution) directly rather
than for the parameter m (see Lin and Wang, 1995).

Fig. 1. Solution through co-linear vectors n and h

2. The first step – the projection of a point onto the ellipsoid

One of the possible solutions to the problem of coordinate transformation may be
obtained by finding the projection of an external point PG = (xG, yG, zG) onto the
reference ellipsoid along the ellipsoidal surface normal, i.e. PE = (xE , yE , zE) (Fig. 1).
This may be achieved by constructing two co-linear vectors: the vector n normal to
the ellipsoid (obtained from the gradient operator) in PE which may be expressed as

148 Marcin Ligas, Piotr Banasik

n = [n1, n2, n3] = 2
[xE

a2 ,
yE

a2 ,
zE

b2

]
(6)

and the vector h connecting points PG and PE (Fig. 1)

h = [h1, h2, h3] =
[
xE − xG, yE − yG, zE − zG

]
(7)

From the basics of vector calculus it is known that coordinates of the co-linear
vectors are proportional with the constant factor k, thus

k =
h1

n1
=

h2

n2
=

h3

n3
⇒ k =

xE − xG

AxE
=

yE − yG

AyE
=

zE − zG

BzE
(8)

where A = a−2 and B = b−2.
In addition, the coordinates of PE should satisfy the equation of the rotational

ellipsoid, i.e.
x2

E

a2 +
y2
E

a2 +
z2
E

b2 = 1 (9)

Combining Eqs. (8) and (9), the systems of equations to be solved for PE = (xE , yE , zE)
are obtained. Although the above reasoning is strict in mathematical terms and fully
applicable to the problem of conversion stated on a triaxial ellipsoid (Ligas, 2011), for
the ellipsoid of revolution, it can be simplified by reducing the dimensions and solving
the task on a meridian ellipse. Hence, Figure 1 simplifies to

Fig. 2. Simplified conversion problem (meridian ellipse)

Conversion between Cartesian and geodetic coordinates... 149

where P′G = (pG, zG), P′E = (pE , zE), pE =

√
x2

E + y2
E , pG =

√
x2
G + y2

G and


pE = N cosϕ

zE =
b2

a2 N sin ϕ
(10)

In this simplified variant, the normal vector to the meridian ellipse n in point P’E is
given by

n = [n1, n2] = 2
[pE

a2 ,
zE

b2

]
=

2
ab

[
b
a

pE ,
a
b
zE

]
=

2
K

[
GpE ,HzE

]
(11)

where G = b/a, H = a/b, K = ab, and the vector h connecting points P’G and P’E is

h = [h1, h2] =
[
pE − pG, zE − zG

]
(12)

The two vectors are required to be co-linear, hence the two-dimensional version of
Eq. (8) may be written as

k =
h1

n1
=

h2

n2
=

pE − pG

GpE
=

zE − zG

HzE
→ HzE (pE − pG) = GpE (zE − zG) (13)

and this makes the first equation of the system.
Similarly to the three-dimensional case, here the point P’E is required to lie on

the meridian ellipse, thus to satisfy the meridian ellipse equation

p2
E

a2 +
z2
E

b2 = 1 (14)

or with the already introduced constants G, H, K

Gp2
E + Hz2

E = K (15)

This makes the second equation. Thus, the final version of the system of nonlinear
equations to be solved is of the form


f1 (pE , zE) = (pE − pG) HzE − (zE − zG)GpE = 0
f2 (pE , zE) = Gp2

E + Hz2
E − K = 0

(16)

3. Solution to the system of nonlinear equations – methods involved

To solve the system of nonlinear equations of the general form f(x) = 0, two methods
were applied. The first one – generalized Newton’s method as a natural extension of
classical Newton’s method for nonlinear equations with one variable which is known to
provide second order convergence. The second – modified Newton’s method (Darvishi

150 Marcin Ligas, Piotr Banasik

and Barati, 2007) which gives third-order convergence for the price of an additional
functions’ evaluation. The iterative process for the two methods may be summarized
as Newton’s method

xi+1 = xi − J (xi)−1 f (xi) (17)

and modified Newton’s method (Darvishi and Barati, 2007)

x∗i+1 = xi − J (xi)−1 f (xi)
xi+1 = xi − J (xi)−1

[
f (xi) + f

(
x∗i+1

)] (18)

where
J – Jacobian matrix (matrix consisting of the first partial derivatives),
x – the iterated solution to the system f(x) = 0,
i – iteration number.

The solution based on Eq. (17) will be denoted as I and the one based on Eq. (18)
as II. For the system of equations (16), which is a low dimensional one, the explicit
form of the Jacobian matrix and its inverse may be expressed as (x1 = pE and x2 = zE)

J =



∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2


=


j11 j12

j21 j22

 =


HzE − (zE − zG)G (pE − pG) H −GpE

2GpE 2HzE

 (19)

J−1 =
1
|J|


j22 − j12

− j21 j11

 (20)

|J| = j11 j22 − j12 j21 (21)

In order to solve the system of equations (16) by the methods defined by Eqs. (17)
and (18), the first approximate solution to x = (pE , zE) is set to

p0
E = apGr, z0

E = bzGr (22)

where
r =

1√
p2

G + z2
G

For algorithm I, the number of iterations was limited to two and for algorithm II, only
one iteration was executed. The consecutive steps in the main algorithm’s loop will
involve a small number of time-consuming arithmetic operations in favour of additions,
subtractions and multiplications, which makes the solution relatively quick compared
to evaluation of transcendental function. The possible weak points of the algorithm
are the zero value of the determinant (singularity of Jacobian matrix) and the adopted
starting point. Numerical tests performed showed the reliability of the algorithm for the
majority points in space, with the exception of the region near the geocentre. This kind

Conversion between Cartesian and geodetic coordinates... 151

of instability occurs in many algorithms, due to the fact that a point within a meridian
ellipse (near the geocentre) of which Cartesian coordinates are to be transformed into
geodetic coordinates lies on the intersection of two normals, and not suitably chosen
initial point for the iteration may cause convergence to the wrong solution or even
divergence (e.g. Zhang et al., 2005; Shu and Li, 2010).

4. The second step – computations of the latitude ϕ and height h

Geodetic latitude ϕ is obtained from Eqs (10), i.e.

tan ϕ =
sin ϕ
cosϕ

=

a2zE

b2N
pE

N

=
a2zE

b2pE
= H2 zE

pE
(23)

and for the geodetic height h, the formula for the Euclidean distance between the points
P’E and P’G is used

h =

√
(pE − pG)2 + (zE − zG)2, if (pG + |zG |) < (pE + |zE |) then h = −h (24)

5. A brief review of compared iterative methods and details of coding

The above method has been compared to six previous iterative methods. They are

Heiskanen and Moritz (1967)

Equation to be solved/iterated:



h =
pG

cosϕ
− N

tan ϕ =
(N + h) zG(
b2

a2 N + h
)
pG

(25)

Initial guess: tan ϕ0 =
a2zG

b2pG
(26)

Method of solution: fixed point iteration

Lin and Wang (1995)

Equation to be solved/iterated: f (m) =
p2

G(
a +

2m
a

)2 +
z2
G(

b +
2m
b

)2 − 1 = 0 (27)

Initial guess: m0 =
ab

(
a2z2

G + b2p2
G

) 3
2 − a2b2

(
a2z2

G + b2p2
G

)

2
(
a4z2

G + b4p2
G

) (28)

Method of solution: Newton’s iteration

152 Marcin Ligas, Piotr Banasik

Derivation of (ϕ, h): ϕ = arctan
(
a2zE

b2pE

)
(29)

h is obtained in the same manner as presented in Eq. (24), where

pE =
pG

1 +
2m
a2

, zE =
zG

1 +
2m
b2

Fukushima (1999)

Equation to be solved/iterated: pGt4 + ut3 + vt − pG = 0 (30)

Initial guess: t =
pG − c + z′

pG − c + 2z′
(31)

where t = tan
(
π

4
− ψ

2

)
, ψ – reduced latitude, u = 2

(
z′ − c

)
, v = 2

(
z′ + c

)
,

c = ae2, z′ =
b
a
zG

Method of solution: Newton’s iteration

Derivation of (ϕ, h): ϕ = arctan
(
a(1 − t2)

2bt

)
(32)

h =
2 b

a pGt + zG(1 − t2) − b(1 + t2)
√

(1 + t2) − 4e2t2
(33)

Borkowski (1989)

Equation to be solved/iterated: 2 sin(ψ − t) − g sin 2ψ = 0 (34)
Initial guess: tanψ0 =

azG

bpG
(35)

where t = arctan
(
bzG

apG

)
, g =

a2 − b2

√
(apG)2 + (bzG)2

Method of solution: Newton’s iteration

Derivation of (ϕ, h): ϕ = arctan
(a
b

tanψ
)

(36)

h = (pG − a cosψ) cosϕ + (zG − b sinψ) sin ϕ (37)

Fukushima (2006)

Equation to be solved/iterated: g (T) = PT − Z − ET√
1 + T 2

(38)

Initial guess: T0 =
|zG |
ecpG

=
Z

e2
cP

(39)

where T = tanψ, P =
pG

a
, Z =

ec |zG |
a

, E = e2, ec =
√

1 − e2

Method of solution: Halley iteration

Conversion between Cartesian and geodetic coordinates... 153

Derivation of (ϕ, h): ϕ = sign (z) arctan
(
T
ec

)
(40)

h =
ecpG + |zG |T − b

√
1 + T 2

√
e2
c + T 2

(41)

Fukushima’s fast implementation of Bowring’s formula (1999)

Equation to be solved/iterated: T =
z′ + cS3

pG − cC3 (42)

Initial guess: T0 =
zG

e′pG
(43)

where C =
1√

1 + T 2
, S = CT , e′ =

√
1 − e2, c = ae2, z′ = e′zG

Method of solution: Newton’s iteration

Derivation of (ϕ, h): ϕ = arctan
(
T
e′

)
(44)

h =



√(
1 − e2) + T 2

e′

(
pG − a√

1 + T 2

)
, if pG > zG

√(
1 − e2) + T 2

(
zG

T
− b√

1 + T 2

)
otherwise

(45)

All presented methods have been coded in Borland Delphi 7 with double precision
floating point arithmetic (extended type 10B in size, 19 – 20 significant digits) and
run under Windows XP Professional operating system, on HP Pavilion notebook with
AMD Athlon(tm) 64X2 Dual – Core Processor TK – 55, 1.80 GHz, 960 MB RAM.
All constant values necessary to implement the particular method were declared only
once at the beginning of a driver program and had no impact on the time of execution.
Table 1 presents the number of most time consuming arithmetic operations used while
coding the algorithms (for CPU times for each arithmetic operation, consult Fukushima
(1999)).

6. Numerical results

A numerical comparison among the methods was carried out on the meridian ellipse
(constant longitude set to λ = 45◦) of the GRS80 reference ellipsoid (Moritz, 1980).
The methods have been tested over three geodetic height ranges. The first range of
heights varying from -10 km to 10 km (terrestrial) with the step of 0.5 km (73 841
points), the second range of heights from 20 km to 1000 km with the step of 10 km
(178 299 points) and the third range of heights from 1000 km to 36 000 km (satellite)
with the step of 100 km (632 151 points).

154 Marcin Ligas, Piotr Banasik

Table 1. The use of arithmetic operations in transformation from (x, y, z) to (ϕ, h)

Method Divisions Square roots Trigonometric

Heiskanen and Moritz (1967) 1 + 4i 1 + 2i 1

Borkowski (1989) 3 + i 4 + 2i 4 + 2i

Lin & Wang (1995) 4 + 5i 3 1

Fukushima (1999) 2 + i 2 1

Fukushima (2006) 2 + 2i 3 + i 1

Fast Bowring (Fukushima, 1999) 2 + 2i 3 + i 1

This work I 2 + i 3 1

This work II 2 + i 3 1

The comparative numerical procedure was performed in two steps. In the first
step Cartesian coordinates were generated on the basis of known geodetic coordinates,
for each ellipsoidal height with latitude varying from 0◦ to 90◦ every 0.05◦. In the
second step geodetic coordinates were recovered from Cartesian coordinates obtained
in the first step. Along with the retransformed coordinates, the time of execution of
each method and the obtained accuracy (defined as log10 from maximum absolute
difference between initial (known) geodetic coordinates and retransformed coordinates
for all latitudes and heights tested within a particular height range) were recorded.
The time of execution of a particular method was rescaled (fraction with the time of
execution of Fukushima’s algorithm as the reference value, in the denominator) to the
Fukushima’s algorithm denoted in his work as (c) (Fukushima, 2006). The time of
execution and the accuracy obtained were checked after each iteration for each of the
tested methods. The maximum deviations (interpreted here as errors) of retransformed
geodetic coordinates from the initial coordinates are presented in logarithmic scale
(base 10). Maximum error in ϕ is expressed as log10{abs[max(ϕt-ϕc)]}, and maximum
error in h is expressed as log10{abs[max(ht − hc)]}, where subscripts t and c denote
initial values and recalculated ones, respectively. The iterations were performed until
a method reached the “acceptable” level of accuracy; namely, error in ϕ < 10−8 dec.
deg. (less than ≈ 0.0004”) and error in h < 10−6 km (less than a millimetre).

The results presented in Table 2 and subsequent tables with respect to the CPU
time seem to stay in contradiction with some results presented in Fukushima (2006).
It can be explaned in terms of the CPU and the environment, i.e. the authors used
Borland Delphi 7 while Fukushima used Compaq Visual Fortran 6.6B, hence the
difference in handling floating point arithmetic. For the terrestrial range of heights
(Table 2), the algorithm II requires one iteration in order to obtain a satisfactory level
of accuracy for all practical purposes. On the other hand, algorithm I requires two
iterations to reach an acceptable level of accuracy but this requires extra time which
slows down the solution. For the terrestrial range of heights (Table 2), the preference
goes to Fukushima’s fast implementation of Bowring’s formula. Fukushima’s (2006)

Conversion between Cartesian and geodetic coordinates... 155

method is placed right after with almost perfect numerical accuracy obtained with only
one iteration. The same level of accuracy reveals the method of Lin and Wang (1995)
with a slight increase of the time. Algorithm II is the fourth in order among the tested
iterative algorithms.

Table 2. Comparison of the methods with respect of the time of execution and obtained accuracy
for the height range -10 km 6 h 610 km

Method
No of iterations

1 2 3 4 5

Heiskanen & Moritz (1967)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.72)
-5.88
-1.17

(1.05)
-8.15
-3.34

(1.39)
-10.39
-5.51

(1.73)
-12.61
-7.68

Borkowski (1989)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.91)
-11.09
-14.88

Lin & Wang (1995)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.13)
-14.88
-14.75

Fukushima (1999)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.85)
1.20
2.39

(1.06)
-0.02
-0.05

(1.28)
-2.35
-4.70

(1.51)
-6.91

-13.79

(1.72)
-14.88
-14.72

Fukushima (2006)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.00)
-14.88
-14.70

Fast Bowring (Fukushima, 1999)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.83)
-11.09
-9.05

This work I
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.04)
-6.09
-2.04

(1.43)
-12.71
-8.19

This work II
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.20)
-9.51
-6.76

For medium heights (Table 3), the preference goes to the Fukushima’s (2006)
algorithm. Bowring’s algorithm requires additional iteration to obtain the acceptable
level of accuracy (decrease in accuracy for h ≈ 350 km) which contributes to the
slower execution. Lin and Wang’s method still preserves the scaled CPU time from
the previous height range but now the decrease in accuracy in calculated h is visible.
The two new presented algorithms for this range of heights keep the timing and the
accuracy from the terrestrial range (Table 2).

156 Marcin Ligas, Piotr Banasik

Table 3. Comparison of the methods with respect of the time of execution and obtained accuracy
for the height range 20 km 6 h 6 1000 km

Method
No of iterations

1 2 3 4 5

Heiskanen & Moritz (1967)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.72)
-4.01
0.83

(1.03)
-6.34
-1.41

(1.36)
-8.64
-3.64

(1.68)
-10.93
-5.88

(2.01)
-13.20
-8.11

Borkowski (1989)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.85)
-7.30

-14.48

(2.33)
-12.53
-14.84

Lin & Wang (1995)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.11)
-13.62
-9.03

Fukushima (1999)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.85)
1.2

2.45

(1.05)
-0.01
0.02

(1.25)
-2.34
-4.63

(1.47)
-6.89

-13.73

(1.66)
-14.88
-14.70

Fukushima (2006)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.00)
-10.51
-14.69

Fast Bowring (Fukushima, 1999)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.82)
-7.29
-5.17

(1.08)
-14.88
-14.73

This work I
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.02)
-6.10
-2.05

(1.39)
-12.73
-8.21

This work II
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.17)
-9.53
-6.78

For the satellite height range (Table 4), the situation changes slightly. Fukushima’s
algorithm is still the quickest, but there is a significant loss in the latitude recovery
in comparison to the two previous ranges of heights (Tables 2 and 3). Two iterations
of the fast implementation of Bowring’s method are slightly slower than Fukushima’s
(2006), but they offer much better accuracy. The next in order are algorithms I and II,
which offer the same time as before but reveal some increase in the accuracy in both
ϕ and h. For all height ranges, the remaining methods are slower than Fukushima’s
(2006) and also slower than algorithm II. Although all the methods presented in the
paper use an iterative scheme, for two of them the only one iteration is sufficient to
obtain acceptable results for any practical purposes for the range of heights tested;
namely, Fukushima’s (2006) and the new presented algorithm.

Conversion between Cartesian and geodetic coordinates... 157

Table 4. Comparison of the methods with respect of the time of execution and obtained accuracy
for the height range from 1000 km 6 h 6 36000 km

Method
No of iterations

1 2 3 4 5

Heiskanen & Moritz (1967)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.73)
-3.68
2.38

(1.05)
-6.18
-0.61

(1.38)
-8.57
-3.31

(1.70)
-10.90
-5.71

(2.03)
-13.19
-8.03

Borkowski (1989)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.87)
-6.49

-12.62

(2.34)
-11.78
-14.05

Lin & Wang (1995)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.12)
-11.17
-5.85

(1.43)
-14.87
-14.05

Fukushima (1999)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.86)
1.21
3.22

(1.06)
-0.01
0.81

(1.27)
-2.31
-3.81

(1.49)
-6.83

-12.84

(1.68)
-14.87
-13.85

Fukushima (2006)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.00)
-8.82

-13.97

Fast Bowring (Fukushima, 1999)
Rescaled CPU time
Max. error in ϕ
Max. error in h

(0.83)
-6.32
-3.58

(1.09)
-14.87
-13.97

This work I
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.03)
-6.43
-2.32

(1.40)
-12.75
-8.11

This work II
Rescaled CPU time
Max. error in ϕ
Max. error in h

(1.20)
-10.00
-7.25

7. Conclusions

In the paper, a new method of solving one of the basic tasks in computational geodesy –
the conversion from Cartesian to geodetic coordinates has been presented. The method
is based on a solution of nonlinear system of equations with respect to coordinates of
a point on the surface of the ellipsoid. Numerical tests indicated that the method works
accurately and reliably. Although it is not the fastest method among all compared,
but it certainly is not the slowest one. In this way, the new method becomes another
trace in the part of geodetic literature devoted to the problem of Cartesian to geodetic
coordinate transformation.

Acknowledgments

The paper is the result of research on geospatial methods carried out within statutory
research No 11.11.150.006 at the Department of Geomatics, AGH University of Science
and Technology, Krakow.

158 Marcin Ligas, Piotr Banasik

References

Borkowski K.M., (1987): Transformation of Geocentric to Geodetic Coordinates without Approximations,
Astrophys. Space Sci., 139, pp. 1–4.

Borkowski K.M., (1989): Accurate Algorithms to Transform Geocentric to Geodetic Coordinates, Bulletin
Géodésique, Vol. 63, pp. 50–56.

Bowring B.R., (1976): Transformation from spatial to geographical coordinates, Survey Review, 23,
pp. 323–327.

Darvishi M.T., Barati A., (2007): A third-order Newton-type method to solve systems of nonlinear
equations, Applied Mathematics and Computation, 187(2), pp. 630–635.

Featherstone W.E., Claessens S.J., (2008): Closed-form transformation between geodetic and ellipsoidal
coordinates, Studia geophysica et geodaetica, 52, pp. 1–18.

Feltens J., (2009): Vector methods to compute azimuth, elevation, ellipsoidal normal and the Cartesian
(X,Y,Z) to geodetic (ϕ, λ, h) transformation, Journal of Geodesy, Vol. 82, pp. 493–504.

Fukushima T., (1999): Fast transform from geocentric to geodetic coordinates, Journal of Geodesy,
Vol. 73, pp. 603–610.

Fukushima T., (2006) Transformation from Cartesian to geodetic coordinates accelerated by Halley’s
method, Journal of Geodesy, Vol. 79, pp. 689–693.

Hedgley D.R., (1976): An exact transformation from geocentric to geodetic coordinates for nonzero
altitudes, NASA TR R – 458, Washington.

Heiskanen W.A., Moritz H., (1967): Physical Geodesy, W.H. Freeman and Company, San Francisco.
Ligas M., (2011): Cartesian to geodetic coordinates conversion on a triaxial ellipsoid, Journal of Geodesy,

DOI: 10.1007/s00190-011-0514-7.
Lin K.C., Wang J., (1995): Transformation from geocentric to geodetic coordinates using Newton’s itera-

tion, Bulletin Géodésique, Vol. 69, pp. 300–303.
Moritz H., (1980): Geodetic Reference System 1980, Bulletin Géodésique, Vol. 54, pp. 395–405.
Shu Ch., Li F., (2010): An iterative algorithm to compute geodetic coordinates, Computers & Geosciences,

Vol. 36, pp. 1145–1149.
Vanicek P., Krakiwsky E.J., (1982): Geodesy: The concepts, Elsevier, Amsterdam, The Netherlands.
Vermeille H., (2002): Direct transformation from geocentric to geodetic coordinates, Journal of Geodesy,

Vol. 76, pp. 451–454.
Vermeille H., (2004): Computing geodetic coordinates from geocentric coordinates, Journal of Geodesy,

Vol. 78, pp. 94–95.
Zanevicius D., Kersys F., (2010): Technologies for calculating geodetic coordinates applying h-geometry

functions, Geodezija ir Kartografija, 36(4), Vilnius Gediminas Technical University, pp. 160–163.
Zhang C.D., Hsu H.T., Wu X.P., Li S.S., Wang Q.B., Chai A.Z., Du L., (2005): An alternative algebraic

algorithm to transform Cartesian to geodetic coordinates, Journal of Geodesy, Vol. 79, pp. 413–420.

Conversion between Cartesian and geodetic coordinates... 159

Transformacja współrzędnych kartezjańskich na geodezyjne na elipsoidzie obrotowej
poprzez rozwiązanie układu równań nieliniowych

Marcin Ligas, Piotr Banasik

Katedra Geomatyki
Wydział Geodezji Górniczej i Ochrony Środowiska

Akademia Górniczo-Hutnicza
al. Mickiewicza 30, 30-059 Kraków

e-mail: ligas@agh.edu.pl, pbanasik@agh.edu.pl

Streszczenie

Artykuł przedstawia nową metodę transformacji między współrzędnymi kartezjańskimi a współrzędny-
mi geodezyjnymi na elipsoidzie obrotowej. Metoda polega na rozwiązaniu nieliniowego układu równań,
w którym niewiadomymi są współrzędne punktu leżącego na powierzchni elipsoidy a będącego rzutem
punktu znajdującego się poza elipsoidą wzdłuż normalnej. Tak wyznaczone współrzędne punktu na elip-
soidzie są podstawą do obliczenia szerokości i wysokości geodezyjnej. Do rozwiązania układu równań
zastosowano metodę Newtona oraz zmodyfikowaną metodę Newtona charakteryzującą się zbieżnością
trzeciego rzędu. Nowa metoda została porównana z kilkoma dobrze znanymi rozwiązaniami iteracyjnymi.
Wszystkie metody były testowane na trzech zakresach wysokości elipsoidalnych: -10 - 10 km (ziemski),
20 - 1000 km, 1000 - 36000 km (satelitarny). Zastosowanie zmodyfikowanej metody Newtona powoduje,
iż jedna iteracja nowej metody wystarczy aby osiągnąć zadowalający poziom dokładności zarówno dla
szerokości geodezyjnej, jak i wysokości. Prezentowana metoda jest nieco wolniejsza niż metoda Fukushimy
(2006) oraz od szybkiej implementacji metody Bowringa (Fukushima, 1999).

