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Abstract: This paper proposes a modifi cation of the classical process for evaluating the 
statistical signifi cance of displacements in the case of heterogeneous (e.g. linear-angular) 
control networks established to deformation measurements and analysis. The basis for 
the proposed solution is the idea of local variance factors. The theoretical discussion 
was complemented with an example of its application on a simulated horizontal control 
network. The obtained results showed that the evaluation of the statistical signifi cance of 
displacements in the case of heterogeneous control networks should be carried out using 
estimators of local variance factors.
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1. Introduction

As a result of processing two periodic measurements in a control network established 
to deformation measurements and analysis, we obtain the values of relative displace-
ments of potential reference points and the values of displacements of controlled points 
in relation to actual reference points (absolute network) or the values of relative dis-
placements of controlled points (relative network), e. g. (Chen, 1983; Chrzanowski and 
Chen, 1990; Caspary, 2000; Prószyński and Kwaśniak, 2006). These displacements are 
evaluated for signifi cance with reference to the accuracy of the applied measurement 
method. The aim of the evaluation is to check if the determined value is the actual 
displacement of a given point or only the result of random measurement errors.

Control networks in which different geometric quantities are measured, with 
different geodetic equipment, in different atmospheric conditions or by different survey 
teams are called heterogeneous control networks. An example of such a network can 
be an linear-angular network established for deformation measurements and analysis.
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The classical evaluation of the signifi cance of displacements for individual points 
in such networks is based on the a priori weight matrix of observations and the 
estimator of global variance factor e. g. (Chen, 1983; Chen et al., 1990; Caspary, 2000; 
Setan and Singh, 2001; Prószyński and Kwaśniak, 2006). This estimator is common 
for all adjusted observations and is, unfortunately, not very effective in the evaluation 
of weighting for heterogeneous measurement results. Evaluation of the signifi cance of 
displacement based on incorrectly selected weight matrices of observations may lead 
to erroneous conclusions.

This paper proposes a modifi cation of the classical process for evaluation of 
the signifi cance of displacements in heterogeneous control networks intended for 
deformation surveys. The modifi cation consists in introducing estimators of local 
variance factors, i.e. local estimators assigned to distinguished homogeneous groups 
of observations.

Generally, the problem of heterogeneous observations is well-known and has been 
dealt with in theory and practice. In literature we can fi nd many methods of estimation 
of local variance factors, e. g. Henderson’s estimation, MINQUE estimation, maximum 
likelihood estimation, Bayesian estimation or combination of maximum likelihood 
estimation and Bayesian estimation- generalized maximum likelihood estimation. 
However, these considerations concern only evaluating of statistical accuracy for 
adjustment results in geodetic networks (one epoch), while this problem has not been 
examined in the context of evaluating of statistical signifi cance for displacements in 
control networks (many epochs). There is a lack of research showing the consequences 
of erroneous weighting for evaluating of statistical signifi cance for displacements in 
control networks. Such detailed research has been carried out in this paper. 

2. Theoretical basis

The aim of the process of evaluating the signifi cance of displacement for the tested 
point i is to check if these vectors are actual displacements or only the result of 
random measurement errors. Evaluating of statistical signifi cance for displacements 
should be based on or supported by statistical null hypothesis

 0 :  ( ) 0iH E d , (1)

where 

 
( 2) (1)i i id x x  (2)

is the displacement vector of the tested point i, 
( )eix  is the vector of coordinates of the 

tested point i from eth measurement epoch and E(∙) is the statistical expectation. If the 
null hypothesis is accepted, this means that the displacement of the tested point i is not 
signifi cance and thus this point is identifi ed as not displaced. If the null hypothesis is 
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rejected, this means that the displacement of the tested point i is signifi cance and thus 
this point is identifi ed as displaced. The null hypothesis can be accepted if following 
condition is fulfi lled (local signifi cance test)
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where 
idQ  is the cofactor matrix of the vector di, i

ud  is dimension of the vector di, 
2
0  

is the common global variance factor for two measurement epochs, α is signifi cance 
level of the results, df is number of degrees of freedom in the control network from 
two measurement epochs, Fα is value read from Snedecor’s F-distribution tables for 
a combination of degrees of freedom f1 = 

i
ud  and f2 = df and the assumed signifi cance 

level α.
The solution (3) can be used for 1-D, 2-D and 3-D networks. Moreover, another 

condition can be derived from the condition (3) for better interpretation of results

 2
0( , , ),

ii E f F dd Q  (4)

where Eα is the confi dence interval (1-D network) or the set of points formed by 
the confi dence ellipse (2-D network), e. g. (Kamiński and Nowel, 2013) or the 
confi dence ellipsoid (3-D network), e. g. (Cederholm, 2003). In this case, evaluation 
of signifi cance consists in checking graphically whether the vector di does not 
exceed the confi dence interval for determination of this vector (1-D network) or the 
confi dence ellipse for determination of this vector (2-D network) or the confi dence 
ellipsoid for determination of this vector (3-D network). If the conditions (3) or (4) 
are fulfi lled, the displacement vector of point i is considered insignifi cant. If this is 
not the case, this vector is found signifi cant and point i displaced. Of course, both 
solutions (3), (4) give the same results.

It should be necessarily noted that the evaluation of signifi cance is of a probabilistic 
nature. Not fi nding the signifi cance of the displacement vector of a tested point i does 
not mean mathematical invariability of its position. This only means that it is found at 
the level of particular measurement errors, with particular probability γ = 1 – α, that 
the given point has not been displaced.

2.1. Classical evaluation of the signifi cance of displacement vector
 

After determination of the vector of displacement for all analyzed points in the 
control network, a common estimator of global variance factor for two measurement 
epochs is calculated e. g. (Chen, 1983; Chen et al., 1990; Caspary, 2000; Setan and 
Singh, 2001; Prószyński and Kwaśniak, 2006). In the theoretical model, which is the 
linearized form of the initial nonlinear relationships
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( )( ) ( ) ( ) ( ),  
ee e e exA   ( )( ) ( )[ , ]

ee eN x   (5)

where ( )
n u

eA  is design matrix, δx(e)
1u  is the vector of the corrections to the 

approximate coordinates for all analyzed points in the control network, 1
( )

u
ev  is 

the vector of residuals, 0
( ) ( ) ( )e e ew l l , 1

( )
n

el  is the vector of actual observations, 
0 1
( )

n
el  is the vector of approximate observations, ( )

n n
eC  is the covariance 

matrix of observations, n is a number of observations and u is number of unknowns, 
a common estimator of global variance factor for two measurement epochs is 
calculated on the basis of the formula

 
2 2

(1) 0(1) (2) 0(2)2
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with 

2
0( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ /T

e e e e edfv P v  is the estimator of global variance factor, 

0
( ) ( ) ( ) ( ) ( )

ˆˆ ( )e e e e exv A  is the estimator of the vector of residuals, 

( ) ( ) ( ) ( ) ( )
ˆ T

e e e e ex  is the estimator of the vector of the corrections to the 
approximate coordinates for all analyzed points in the control network, 

0
( ) ( ) ( )

ˆˆ e e exx x  is the vector of adjusted coordinates for all analyzed points in the 
control network and

(1) (2)df df df ,

( ) ( ) ( )
T
e e eN A P A ,

where ( )
n n

eP  is weight matrix of observations, 0
( )ex  is the vector of approximate 

coordinates for all analyzed points in the control network, df(e) is number of degrees 
of freedom in the control network. For a matrix N(e) used g-inverse. This is due to 
the fact that the control networks are free networks. In this case, the matrix A(e) is the 
matrix of the columnarly incomplete rank, which is why the matrix N(e) is singular 
and there is no ordinary (classical) inverse (∙)–1. From the point of view of geodesy, 
we have a datum defect problem for the estimator ( )

ˆ
ex  and thus for the estimator d̂. 

To solve this problem, the datum is defi ned on a group of stable points. In fact, we put 
on these points, certain conditions (constraints), e. g. the condition of constancy for 
this points or the condition of minimum trace of cofactor matrix for this points. This 
problem is well-known. More information can be found in papers: e. g. (Prószyński, 
1986; Chen et al., 1990; Prószyński and Kwaśniak, 2006).

 The estimator 2
0( )ˆ e  is common for all adjusted observations e. g. for linear and 

angular observations in linear-angular networks. 
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Cofactor matrix of the estimator of the displacement vector can be presented in 
the following form

 

1 1 2 1
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Q QdQ  (for 2-D network) is the cofactor matrix of the vector d̂ i.

After assuming the signifi cance level α i.e. a quantity such that

 P{d̂ i E  (8)

evaluation of the signifi cance of the vector d̂ i is conducted. Based on the estimator 
2
0ˆ , the matrix ˆ

idQ  and the assumed signifi cance level α the parameters of a confi dence 
ellipse (for 2-D network) are determined. These parameters are the semi-axes of the 
ellipse (9) and the twist angle of the ellipse, i.e. the angle included between the semi-
major axis and the X-axis of the determined coordinate system (10)

 0 1
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 2 2
ˆ ˆ ˆ ˆ( ) 4

i i i i
i dx dy dx dy

Q Q Q ,  (13)

where Fα is value read from Snedecor’s F-distribution tables for a combination of 
degrees freedom f1 = u, f2 = n – u and the assumed signifi cance level α.
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The condition (4) is most often checked by the graphical method. The confi dence 
ellipse Eα (for 2-D network) is superimposed on vector d̂ i in such a way that its 
centre coincides with the origin of this vector (Fig. 1)

Fig. 1. Displacement vector and confi dence ellipse

If vector d̂ i lies within the confi dence ellipse, the displacement is considered insig-
nifi cant. In the opposite case, it is assumed that at the level of the specifi ed measure-
ment errors and the assumed signifi cance level of the results, the tested point i was 
displaced.

The procedure presented above is classical and almost always applied in practice.

2.2. Proposal of modifi cation for classical evaluation of the signifi cance 
of displacement vector

The presented algorithm is based on estimation of local variance factors, i.e. local
2
0l assigned to distinguished homogeneous groups of observations (l = 1, 2, ..., r 

– designation of homogeneous groups of observations). However, it should be noted 
that the criterion for dividing a set of observations into groups does not necessarily 
have to result from the type of performed measurements, but also from other features, 
e.g. the type of instruments used, the time of vector measurement using GNSS 
technology, etc. Henderson’s method (Henderson, 1953; Wiśniewski, 1989; 1990) 
was adapted in the algorithm. This method is simpler and more natural than other 
methods of estimation of local variance factors.

The original Henderson’s system of equations, adopted to model (5) can be 
presented in the following simple form (Henderson, 1953)

 ( )T T
l lE w h w w h w, (14)

for each l = 1,…, r, where hl is some unknown matrix. On the basis of the system of 
equations (14) we obtain
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 ( ) ( ) ( )T T
l l lTr E Eh C w h w w h w, (15)

where Tr(∙)–1 denotes a trace of the matrix, C = GP–1 and G = diag(…, 2
0l, …). 

Because E(w) = Aδx
  (5) then

 ( ) T T T
l l lTr x xh C . (16)

In the Henderson’s estimation, we have to fi nd r matrix hl which fulfi ll the condition

 T T T
l lx x , (17)

for each l = 1,…, r and then we have to solve the equations system 

 Tr T
l lh C w h w, (18)

with respect to the unknown local variance factors …, 2
0l, … . The condition (17) is 

very important here. These condition means, that the determined further estimators 
will be unbiased. 

In geodetic problems the variance factor is estimated on the basis of quadratic 
form ˆ ˆTv Pv. Analogy, the local variance factors should be estimated on the basis of 
local quadratic forms ˆ ˆT

l l lv P v . Thus, we see that in order to adopt the Henderson’s 
method for the geodetic problems, the quadratic forms ˆ ˆT

l l lv P v  should be brought to 
the Henderson’s quadratic forms T

lw h w . In fact, we have to determine the matrix 
hl, which fulfi ll the condition of the unbiased estimators …, 2

0l, … (17). For this 
purpose, we write

 ˆˆ T
l l l l l lxv A , (19)

where

[ ,  , ]lu nT u n T
lA A , 

( ,  ,  )l ln nn n
ldiagP P , 

0
ln n T

l l l
, 

0 [ ]l l ln n n n
l l ,

Il is the identity matrix and nl is the number of observations for the lth homogeneous 
group.

Further, on the basis of the equations system (19) we obtain 
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 ˆ ˆ TT T
l l l l l l l , (20)

where 

 T
l l l l. (21)

After substitution of the matrix hl (21) into the system of equations (16), we 
obtain

 T T T T
l l l l lTr x xh C . (22)

The condition of the unbiased estimators (17) is fulfi lled by assumed matrix hl, 
because

 0( )T T T T T T T T
l l l l l . (23)

Determining the left side of the equations system we obtain (Appendix 1)
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2 ( ) ( ),l l l l lq n Tr TrN N N N N N
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T

l l l lN A P A ,  
T
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l, k = 1, ..., r is the designation of homogeneous groups of observations. 

Now, the Henderson’s equations system (18) can be written in the form

 
1

2 2 2
0 0 0

1 1

l r
T

l l lk k lk k l
k k l

q c c w h w . (25)

Finally, on the basis of the equations system (25), the equations system enabling 
estimation of local variance factors can be presented in the following form

 

12
12 101 1

2
21 2 202 2

2
1 20

ˆ
ˆ

ˆ

T
l r

T
r

T
r r rr r

q c c
c q c

c c q

w h w
w h w

w h w .

 (26)



Statistical signifi cance of displacements in heterogeneous control networks 147

Estimators of local variance factors (26) are calculated independently for two 
measurement epochs (e = 1, 2). The calculations are carried out in an iterative cycle 
with the following formula

 

( )

2
0 ( )

1( 1) 2 ( ) ( )
( ) 0 ( ) ( )

1,2,

ˆestimation ,

ˆdiag , , .

j

l e

j j j
e l e l e

j
P P  (27)

In subsequent iterative steps, new matrices P(e) are obtained. After each next step, 
the values of this matrix are closer to the “real” values. The process (27) is fi nished 
at the moment when the following condition is fulfi lled

 2 2
0( ) 0 ( )ˆ ˆ 1e l e  (28)

(within the limits of the assumed solution precision).
Suffi ciently accurately estimated matrices P(e) are obtained from the last itera-

tive step. On their basis, the cofactor matrix of the displacement vector (7) is deter-
mined.

After assuming the signifi cance level α, the parameters of the confi dence ellipse 
can already be determined for the displacement vector. Because 2

0ˆ 1, the parameters 
of a confi dence ellipse will now assume the form

 1

2

2 ,

2 ,
i

i

a F

b F
 (29)

and (10). 
Afterwards, we proceed the same as in the case of classical evaluation of 

signifi cance.

3. Numerical test

The practical properties of the proposed solution were analyzed based on the example 
of a simulated linear-angular network. The analyzed network consists of two stable 
reference points A, B and one controlled point i (absolute network), (Fig. 2). By 
way of simplifi cation, a rigid reference system was assumed, i.e. with zero values of 
displacements at points A, B.
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Fig. 2. Control network

In the fi rst place, theoretical coordinates of points A, B, i were assumed in the 
initial and actual measurements. Displacement was simulated for point i, adding in 
the actual measurement (e = 2) the value of 0.010 m to the coordinates X, Y. The 
theoretical coordinates of points A, B, i have been compiled in Table 1.

Table 1. Theoretical coordinates of points

Initial measurement (e = 1) Actual measurement (e = 2)

point X[m] Y[m] point X[m] Y[m]

A 0.000 0.000 A 0.000 0.000

B 0.000 100.000 B 0.000 100.000

i 100.000 30.000 i 100.010 30.010

Next, the results of two periodic measurements, randomly disturbed with 
measurement errors (Table 2), were generated based on theoretical coordinates 
(Table 1). Normal distribution of “real” measurement errors for angles and distances 
was assumed with standard deviations

 σβ = 14cc ,

 σs = 0.006 m

and the assumed signifi cance level α = 0.05. In order to simplify the calculations, 
observations in both measurement epochs were disturbed with exactly the same 
errors.
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Table 2. Simulated results of the measurements

Initial measurement (e = 1) Actual measurement (e = 2)

observation code
observations

observation code
observations

c l r c l r

A i B 81g 44c 66cc A i B 81g 44c 25cc

B A i 61g 12c 15cc B A i 61g 12c 87cc

i B A 57g 43c 45cc i B A 57g 43c 14cc

- A i 104.409m - A i 104.422m

- i B 122.061m - i B 122.063m

 Adjustment was carried out by the least squares method separately for two variants 
differing in the start values of a priori mean errors of measurement results assumed 
for calculations. These values were the basis for determining the weight matrix.

Variant 1 assumed

 mβ = 10cc ,

 ms = 0.010 m

while variant 2 assumed

 mβ = 20cc ,

 ms = 0.005 m.

Since standard deviations are known in this example, it can be said that in the fi rst 
variant the value of the mean error of angle measurement was underestimated and the 
value of the mean error of side measurement overestimated. The opposite simulation 
was carried out in the second variant.

The displacement vector of point i was determined by the method of coordinate 
differences. In the fi rst and second measurement epochs, observations were disturbed 
with the same errors, which is why values of the displacement vector equal to assumed 
theoretical values were obtained in both variants. 

In variant 1 we obtained [m]

( 2) (1)
ˆ ˆ [0.010,0.010]T

i i id x x ,

where

(1) ( 2)
ˆ ˆ[100.002,30.000] , [100.012,30.010]T T

i ix x ,
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while in variant 2 [m]

( 2) (1)
ˆ ˆ [0.010,0.010]T

i i id x x ,

where

(1) ( 2)
ˆ ˆ[100.002,30.001] , [100.012,30.011]T T

i ix x .

The estimators of global variance factors were then calculated and implementing 
the iterative cycle (27) estimators of local variance factors. In addition, the values of 
a priori mean errors of measurement results were determined on the basis of matrices 
P(e) assumed for adjustment in individual iterative steps. The obtained results are 
presented in Table 3 and Table 4.

Table 3. Estimators of global and local variance factors

Iteration
(j)

Estimators of variance factors

global local
2 2
0(1) 0(2)ˆ ˆ, 2 2

0 (1) 0 (1)ˆ ˆ, s
2 2
0 (2) 0 (2)ˆ ˆ, s

Variant 1

1 0.96, 0.99 2.24, 0.26 2.24, 0.32

2 - 0.74, 1.33 0.78, 1.27

3 - 1.22, 0.88 1.17, 0.91

4 - 0.92, 1.07 0.94, 1.05

5 - 1.05, 0.97 1.03, 0.98

6 - 0.98, 1.02 0.99, 1.01

Variant 2

1 0.92, 1.06 0.21, 1.67 0.14, 2.01

2 - 2.69, 0.66 4.05, 0.64

3 - 0.78, 1.25 0.78, 1.26

4 - 1.17, 0.90 1.16, 0.91

5 - 0.93, 1.05 0.94, 1.04

6 - 1.04, 0.97 1.03, 0.98
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Table 4. A priori mean errors of measurement results

Iteration
(j)

A priori mean errors of measurement
results assumed for adjustment

mβ(1)[cc], ms(1)[m]  mβ(2)[cc], ms(2)[m]

Variant 1

1 10.0, 0.010 10.0, 0.010

2 15.0, 0.0051 15.0, 0.0057

3 12.9, 0.0059 13.2, 0.0064

4 14.2, 0.0056 14.2, 0.0061

5 13.7, 0.0058 13.8, 0.0062

6 14.0, 0.0057 14.0, 0.0062

Variant 2

1 20.0, 0.005 20.0, 0.005

2 9.1, 0.0065 7.4, 0.0071

3 14.9, 0.0053 15.0, 0.0057

4 13.1, 0.0059 13.2, 0.0064

5 14.2, 0.0056 14.2, 0.0061

6 13.7, 0.0057 13.8, 0.0062

The presented values show that estimators of global variance factors did not detect 
any irregularities in the weighting of the observations ( 2

0( )ˆ 1e  ), (Table 3). The 
matrix P(e) based on wrongly selected a priori mean errors of measurement results 
will therefore be falsifi ed in both variants. Meanwhile, estimators of local variance 
factors rightly recognized these irregularities ( 2 (1) 2 (1)

0 ( ) 0 ( )ˆ ˆ, 1e s e ), (Table 3). After 
each iterative step a priori mean errors of measurement results were closer to actual 
values (Table 4). The computational process was stopped in the sixth iteration. 

An erroneous matrix P(e) may cause erroneous evaluation of the signifi cance of 
the displacement vector. In order to confi rm the above statement, the parameters of 
confi dence ellipses for determination of the displacement vector were calculated on the 
basis of the estimation results for global and local variance factors. The signifi cance 
level α = 0.05 was assumed for the calculations.

In analysing the results of calculations presented in Table 5, it can be seen that in 
both variants the parameters of the confi dence ellipse based on the estimation results 
for global variance factors differ from actual values, determined on the basis of the 
estimation results for local variance factors. 
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Table 5. Parameters of confi dence ellipses

Estimators of variance 
factors

Parameters of confi dence ellipses

ai [m] bi [m] ϕi [g]

Variant 1

global 0.010 0.008 15.5210

local 0.013 0.011 22.8502

Variant 2

global 0.017 0.015 47.0624

local 0.013 0.011 22.2765

Confi dence ellipse regions based on global and estimators of local variance factors 
have been compared graphically below (Fig. 3, Fig. 4).

Fig. 3. Confi dence ellipses for determination of the displacement vector of point i using estimators of 
global (normal line) and local (bold line) variance factors – variant 1

Fig. 4. Confi dence ellipses for determination of the displacement vector of point i using estimators of 
global (normal line) and local (bold line) variance factors – variant 2
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On the basis of the results shown in Fig. 3 and Fig. 4, we fi nd that the presented 
confi dence regions differ in both variants. In addition, in variant 2, in the case of 
the confi dence ellipse based on the estimation results for global variance factors, 
the displacement vector of point i was interpreted as insignifi cant. Meanwhile, the 
confi dence ellipse based on the estimation results for local variance factors indicates 
that the displacement of point i is signifi cant. The obtained results support the thesis 
formulated earlier that using estimators of global variance factors may lead in some 
cases to erroneous evaluation of the signifi cance of displacement.

4. Conclusions

Geodetic methods are most often used for determination of minor displacements, with 
quantities slightly exceeding errors in their determination. The presented paper proves 
that classical evaluation of the signifi cance of such displacements may lead to false 
conclusions in the case of heterogeneous control networks. The research carried out 
in this paper allows the authors to formulate the following recommendations:
i) the estimator of global (classical) variance factor can be applied only for evaluation 

of the signifi cance of displacements in homogeneous control networks,
ii) evaluation of the signifi cance of displacements in the case of heterogeneous (e.g. 

linear-angular) control networks should be carried out using estimators of local 
variance factors,

iii) in the case of displacements with quantities considerably exceeding the size of 
the confi dence region, the issue of the variance factor is of no importance in 
evaluation of the signifi cance of displacements.
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Streszczenie

W pracy zaproponowano modyfi kację klasycznego procesu oceny statystycznej istotności przemiesz-
czeń w przypadku niejednorodnych sieci kontrolnych (np. kątowo- liniowych) zakładanych do pomiarów 
i analizy deformacji. Podstawą proponowanego rozwiązania jest idea lokalnych współczynników wa-
riancji. Rozważania teoretyczne uzupełniono przykładem zastosowania na symulowanej poziomej sieci 
kontrolnej. Uzyskane wyniki pokazały, że ocena statystycznej istotności przemieszczeń w przypadku 
niejednorodnych sieci kontrolnych powinna być przeprowadzana z użyciem właśnie estymatorów lokal-
nych współczynników wariancji.


