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Abstract: In the paper a transformation between two height datums (Kronstadt’60 and 
Kronstadt’86, the latter being a part of the present National Spatial Reference System 
in Poland) with the use of geostatistical method – kriging is presented. As the height 
differences between the two datums reveal visible trend a natural decision is to use the 
kind of kriging method that takes into account nonstationarity in the average behavior 
of the spatial process (height differences between the two datums). Hence, two methods 
were applied: hybrid technique (a method combining Trend Surface Analysis with 
ordinary kriging on least squares residuals) and universal kriging. The background of the 
two methods has been presented. The two methods were compared with respect to the 
prediction capabilities in a process of crossvalidation and additionally they were compared 
to the results obtained by applying a polynomial regression transformation model. The 
results obtained within this study prove that the structure hidden in the residual part 
of the model and used in kriging methods may improve prediction capabilities of the 
transformation model. 
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1. Introduction

As geostatistical methods constantly gain attention in different fi elds of applied 
science where the need of precise forecasting is present, here the use of optimal 
prediction (kriging) for random fi elds is presented in order to transform heights 
from Kronstadt’60 to Kronstadt’86 height datum. This work refers to the previously 
published paper (Ligas and Banasik, 2012) concerning the same problem but treated 
with a different statistical tool – polynomial regression. From this respect the part of 
the paper concerning description of the study area will be limited to the necessary 
minimum and the reader is referred to (Ligas and Banasik, 2012) in this regard. 
Here, we refresh that the area under study is the Cracow with 150 homological 
benchmarks of the major (primary) vertical network. Table 1 summarizes the dataset 
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of 150 common points of the Ith class of the primary vertical network as to the height 
difference between Kronstadt’60 and Kronstadt’86 (dH86 – 60). 

Table 1. Summary of height differences on common benchmarks 

Number of 
points

Min
[m]

fi rst 
quartile

[m]

median
[m]

third 
quartile

[m]

max
[m]

range
[m]

average
[m]

std. dev.
[m]

150 -0.0514 -0.0364 -0.0344 -0.0327 -0.0281 0.0233 -0.0351 0.0037

Figure 1 presents distribution of control points of the I class as well as localization 
of 8 test points of the second class later used for validation purposes.

 

 

Fig. 1. The boundaries of Krakow’s district (study area), black triangles – the basic vertical control 
network (I class), blue triangles – 8 benchmarks of the second class of the basic control network used 

for validation purposes

Geostatistical methods known under one common name – kriging – have a history 
dating back to fi fties of the last century and were initially linked with two names: 
Daniel Gerhardus Krige (originator) and Georges Matheron (well suited continuator, 
French mathematician and geologist). But far important thing than the history is the 
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broad spectrum of applications which among others are: geology, hydrology, mining, 
remote sensing, soil science, epidemiology, geophysics; saying otherwise everywhere 
where the need of some form of reliable prediction is required. It is worth mentioning 
that geodesists developed a very similar technique called least squares collocation 
e.g. (Moritz, 1978; Moritz, 1980). But this has a very particular character combining 
observational data of different types for an optimal determination of the earth’s fi gure 
and gravitational fi eld (Moritz, 1980). Hence it is far less known outside the geodetic 
community. This is partially due to abovementioned particular character and also from 
the reason of software availability. Some (not exhaustive) theoretical comparison of 
the two methods may be found in the literature e.g. Dermanis (1984), Cressie (1990). 
Also a comparison between simple kriging and least squares prediction (less general 
precursor of least squares collocation) may be found in Ligas and Kulczycki (2010)

Here, the method of kriging is used for a simple problem of transformation 
between two height datums (Kronstadt’60 and Kronstadt’86) where the polynomial 
– based approach is the most common. Here, in reference to the previous paper (Ligas 
and Banasik, 2012) we do not use new nomenclature concerning classifi cation of 
geodetic networks according to (RMAiC, 2012) as it does not have any infl uence on 
the fl ow of the methods involved. The irregular pattern of points within the study area 
(see Fig. 1) may cause potential diffi culties as one always wants to have as regular 
pattern as possible never mind the method involved.

As the problem of spatial prediction by kriging is very broad, requires some 
additional knowledge from random fi elds theory, familiarity with specifi c vocabulary, 
and the space in the paper is limited, hence very often suitable references will be 
provided. 

2. Theoretical background

Kriging which is synonymous to the optimal prediction for random fi elds (Stein 1999) 
has many variants. Among them one may differentiate between linear and nonlinear, 
univariate and multivariate kriging also within this subdivision one may have different 
variants of kriging depending on assumptions imposed (a fi rm review of kriging 
methods may be found in e.g. Cressie (1993), Goovaerts (1997)). The goal of kriging 
is the same as all other interpolation (prediction) methods: to fi nd the optimal Z(s0) 
(explanation of quantities after eqs. (1) and (2)) on the basis of all available data 
Z (global neighborhood) or some subset of Z (local neighborhood). Optimality of 
kriging in statistical sense is achieved by applying two fundamental principles that 
must be satisfi ed by the predictor. The fi rst, it is unbiasedness of the predictor (1) and 
the second is the minimization of the mean squared error of prediction (2) (in some 
cases estimation e.g. kriging of the mean).

 0Z,pZẐ 0000 ssZss EE  (1)
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 min    Z,pZẐ 2
00

2
00 ssZss EE   (2)

where:
E – expected value operator
s0 – spatial location for which prediction is made, here s0 = [x0, y0]
Z – available data (observations)
Ẑ(s0) = p(Z, s0) – predictor at s 0 based on available data Z
Z(s0) – true and unknown value to be predicted

From the standpoint of this work the most important kriging variants are those 
which take into account a trend (non – stationary expected value) in the data at 
hand due to the fact that the existence of strong second degree polynomial trend in 
height differences between the two datums was proven for this dataset (Ligas and 
Banasik, 2012). Hence, in order to develop kriging – based transformation model 
two approaches are considered. The fi rst called here the hybrid method. Briefl y, the 
method bases on removing systematic component from the data (detrending) then 
working with residual part of the prediction model and fi nally restoring (adding back) 
the systematic component. The trend is usually estimated via ordinary least squares 
(OLS) (or generalized least squares, GLS), residuals are “treated” with ordinary 
kriging (later on it will be explained why this kriging variant) and then fi nal prediction 
at an unknown point is equal to the sum of the trend component and the predicted 
residual. The second method, universal kriging, performs the abovementioned 
procedure in one go. Both approaches, ordinary kriging (used in hybrid technique) 
and universal kriging, belong to the class of linear predictors; it means that they 
are linear combinations of available data, this may be written as (in case of hybrid 
technique Z(s) is replaced by residual part of the model i.e. δ(s)): 

 
 sZsZs T

00 ,pẐ  (3)

where:
λ – vector of kriging weights (coeffi cients)

Remark on kriging weights 

When applying kriging, one must be aware that the term “kriging weights” is not 
used in the usual meaning of a weight of an observation. Kriging weights do not 
constitute a convex linear combination i.e. in general they do not sum up to unity 
(simple kriging, no constraints on weights) and what is more important they may be 
negative. More on “kriging weights” and consequences in different applications may 
be found in e.g. Deutsch (1996), Wackernagel (1995), Armstrong (1998).
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Hybrid technique (Trend Surface Analysis and ordinary kriging on residuals)

1. Set up of linear spatial model: Z(s) = F(s)β + δ(s) 

2. Fit the model in order to estimate coeffi cients β̂ via OLS or GLS

Steps (1) and (2) are the stages of e.g. polynomial regression and this what is going 
further is just an improvement

 
3. Perform ordinary kriging on residuals δ̂ (s) from the fi tted model, steps (1 and 2)

4. Obtain the hybrid kriging predictor sssfsZ ˆ|ˆˆ
000 OK

T p
 

where:
F(s) – design matrix of a trend involved, δ(s) – error term, ss ˆ|ˆ

0OKp
 
 – ordinary 

kriging predictor of the form (3) i.e.:

 sss ˆˆ|ˆ
0

T
OKp

 
 (4)

Applying (2) subject to (1) (constrained optimization) with the predictor expressed 
as (4) one arrives at a system of ordinary kriging equations (5a, b) (Olea, 1999; 
Armstrong, 1998) solved with respect to kriging weights:

 C1 λκ = c1 (5a)
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where:
C1 – covariance matrix supplemented with a vector of “ones” resulting from constraints 
on ordinary kriging weights
λκ – vector of kriging weights supplemented with Lagrange multiplier
c1 – vector of covariances supplemented with “unity” resulting from constraints on 
ordinary kriging weights
Cij – covariances between Zi and Zj, (between two observations from the neighborhood 
of actually predicted point)
ci – covariances between Z0 and Zi (between the point actually predicted and every 
point form the neighborhood) 
κ – Lagrange multiplier resulting from conditional minimization of (2)
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Figure 2 shows the structure stored in C1 matrix and c1 vector of (5a or 5b) 
(additional row and column of “ones” as well as Lagrange multiplier concerns 
constraints on kriging weights, in ordinary kriging weights must sum up to “unity”). 
It may be seen that all available information contained in data is used. Each row in 
C1 matrix (except the last row and the last column) contains covariances between 
each pair of observations from the neighborhood (Fig. 2 shows this structure for the 
fi rst row; blue dashed lines linking observation no. 1 and all other observations from 
the neighborhood). Vector c1 contains information on covariances between a point 
actually predicted (unknown value) and all data values from the neighborhood – red 
dashed line linking point no. “0” with points numbered 1..n. 

Z0 

Z1 | C11 

Z2 

Z3 Z4 

Zn 

C12 

C13 
C14 

C1n 

c01 

c02 

c03 c04 

c0n 

Fig. 2. Structure stored in the matrix C1 (the fi rst row) and the vector c1; blue dots with horizontal bars 
(1..n) – observations from the neighborhood; red dot with vertical bars (0) – value to be predicted 

The above formulas (5a) and (5b) are expressed in terms of the covariance 
function but in case of ordinary kriging they may be expressed in terms of more 
general structure function i.e. semivariogram. The two functions, covariance function 
and semivariogram, under certain conditions are equivalent. In this place it is worth 
introducing a quotation from (Heiskanen and Moritz, 1967) on the usefulness of 
the covariance function: The remarkable thing is that the only function needed to 
derive optimum predictors in the mean square sense is a covariance function.  More 
on the covariance function and semivariogram may be found in e.g. (Olea, 2006; 
Schabenberger and Gotway, 2005; Cressie, 1993; Goovaerts, 1997; Chiles and 
Delfi ner, 1999) and from geodetic ground in Moritz (1978) and lectures “Statistical 
analysis of environmental data” by F. Sanso available online at http://geomatica.
como.polimi.it/corsi/.
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Of course, one may argue that the choice of simple kriging for the hybrid 
technique would be defi nitely better due to the fact that residuals form the OLS (GLS) 
satisfy E(δ) = 0 thus the assumption of known and constant mean of the random 
fi eld (necessary for simple kriging) is satisfi ed. But, kriging from practical point of 
view is usually performed with some quantity of data (local neighborhood) rather 
than with all available data (global neighborhood) in order to avoid solving large 
systems of equations of the form (5b). Thus, for some subregions (determined by 
local neighborhood) of a spatial domain this assumption (zero mean) may not hold 
at all and thus provide unreliable results of prediction. Hence, the ordinary kriging 
assuming constant and unknown mean value of a random fi eld is applied. This method 
adds some robustness to the hybrid technique.

Universal kriging

Universal kriging (or kriging with a trend model) is a step further beyond ordinary 
kriging. It drops the assumption of constant (stationary) mean value (as it is in 
ordinary kriging E[Z(s)] = μ). Decomposition of the process into the mean value and 
a disturbance still holds here (Z(s) = μ(s) + δ(s)), but the mean value of the process is 
modeled by a function of location in space expressed by coordinates of observations i.e. 
E[Z(s)] = μ(s) is no longer constant but is an unknown linear combination of known 
functions {f0(s),…, fp(s)}, s  D (Cressie, 1993) (D – spatial domain or simply “study 
area”). Trend, being a model of low frequency, characterizes the average behavior 
of the phenomenon in the spatial domain D (study area), whereas the disturbance, 
being a high frequency component, describes fl uctuations of the phenomenon. Trend 
is usually modeled in polynomial form (linear, quadratic or seldom higher order 
fashion) i.e.: 

 
p

i
iif

0
ss  (6)

where: {f0(s) = 1, f1(s) = x, f2(s) = y, f3(s) = xy,…}. 

Applying optimality criteria (1) and (2) (constrained optimization) to the predictor 
expressed as (3) and having in mind no longer constant mean one arrives at a system 
of universal kriging equations (7a, b) (Olea, 1999; Goovaerts, 1997) solved with 
respect to kriging weights.

 CF λκ = cf (7a)
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where:
CF – covariance matrix supplemented with a matrix of trend components resulting 
from constraints on universal kriging weights
λκ – vector of kriging weights supplemented with a vector of Lagrange multipliers
cf – vector of covariances supplemented with a vector of trend components resulting 
from constraints on universal kriging weights

Detailed derivation of the universal kriging predictor may be found e.g. in Cressie 
(1993), Schabenberger and Gotway (2005), Olea (1999) and also in Chauvet and Galli 
(1982) which is entirely devoted to the universal kriging method. One may easily 
notice that universal kriging reduces to ordinary kriging for μ(s) = f0(s)β0 = β0 = μ 
(unknown, constant mean, see (5b)) 

Universal kriging predictor may also be presented in a different form. Dividing 
(7b) into block matrices and performing suitable operations one arrives at the 
expression of the following form:

 sFsZCcsfsZssZs ˆˆˆ| 1
000

TTT
UK ZZp

 
 (8)

where: sZCsFsFCsF 111 TTˆ  

This is nothing but Goldberger’s best linear unbiased predictor (Goldberger, 1962) 
only in a spatial framework, see also work by Dermanis (1984) comparing kriging 
with least squares collocation. 

3. Results

Results of the two approaches presented in the paper have been compared with 
the use of a crossvalidation technique (leave-one-out) and also confronted with the 
polynomial regression model described in (Ligas and Banasik, 2012). Crossvalidation 
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is a very useful technique of choosing the model of best prediction performance by 
dropping some data from the dataset and trying to forecast their values on the basis 
of remaining data (more on crossvalidation the reader may fi nd in e.g. Efron and 
Tibshirani (1993), Maddala (1992), Hastie et al (2009)). This approach prevents against 
accepting an overfi tted model with poor prediction capabilities as it is known that one 
may get a perfect fi t with almost null prediction capabilities. In fact, crossvalidation 
technique was also used to select optimal local search neighborhood for universal 
kriging (6 sectors with 8 neighboring observations in each) and for the hybrid method 
(6 sectors with 4 neighboring observations in each). The following table (Table 2) 
presents the results of the crossvalidation for two methods considered in the paper 

Table 2. Results of crossvalidation for polynomial regression, universal kriging and hybrid method 

Crossvalidation

Quadratic 
function

Minimum error -1.2 [cm]
Maximum error 0.5 [cm]
Averaged crossvalidation error -0.1 [cm]
Mean squared crossvalidation error 0.4 [cm]
Summary of crossvalidation errors

Interval 
[mm] [0, 1] (1, 2] (2, 3] (3, 4] (4, 5] > 5

No of 
points 29 39 31 20 13 18

Universal 
kriging

Minimum error -0.5 [cm]
Maximum error 0.6 [cm]
Averaged crossvalidation error 0.0 [cm]
Mean squared crossvalidation error 0.2 [cm]
Summary of crossvalidation errors 

Interval 
[mm] [0, 1] (1, 2] (2, 3] (3, 4] (4, 5] > 5

No of 
points 90 22 17 14 5 2

Hybrid 
method

Minimum error -0.5 [cm]
Maximum error 0.6 [cm]
Averaged crossvalidation error 0.0 [cm]
Mean squared crossvalidation error 0.2 [cm]
Summary of crossvalidation errors

Interval 
[mm] [0, 1] (1, 2] (2, 3] (3, 4] (4, 5] > 5

No of 
points 93 23 17 12 2 3
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and the ones from polynomial regression model. All the crossvalidation statistics are 
identical with those used in Ligas and Banasik (2012), hence there should be no 
confusion in comparison the results.

As may be seen both kriging based approaches (with quadratic trend) to the local 
transformation problem reveal much better crossvalidation characteristics than the 
pure polynomial regression model (quadratic function). Minimum crossvalidation 
error from kriging approaches decreased roughly by half comparing to the polynomial 
model on the other hand the maximum crossvalidation error rests on the same level. 
Zero averaged crossvalidation error for the two methods presented in the paper proves 
that the prediction was made without an apparent bias (no under/over estimation 
present in the model). This is a slight improvement over the polynomial approach 
where this error is on the level of -0.1 cm. Also, mean squared crossvalidation error has 
been reduced by half. One may also confront the number of the crossvalidated errors 
within given intervals from all the methods presented; here the advantage of kriging 
methods over the polynomial solution is clearly visible. These all crossvalidation 
statistics confi rm that two kriging based approaches reproduce the data in a much 
better way. As far as two kriging based approaches are concerned they reveal very 
comparable prediction capabilities. It would be hard to decide upon one of the two 
defi nitely. Similarly, as in Ligas and Banasik (2012) the true prediction capabilities 
of the methods have been verifi ed on 8 test points of the IInd class of the primary 
vertical network (old nomenclature). Table 3 reveals the results. 

Table 3. Comparison of the “true” prediction errors on eight test points of the IInd class of the 
primary vertical network for polynomial regression, universal kriging and hybrid technique (minimum, 
maximum and average computed from absolute values; PR – polynomial regression, UK – universal 

kriging, H – hybrid method, (T – P) – True “minus” Predicted )

Point 
No.

True dH 
[cm]

Predicted 
dH (PR) 

[cm]

Predicted 
dH (UK) 

[cm]

Predicted 
dH (H) 

[cm]

T – P 
(PR) 
[cm]

T – P 
(UK) 
[cm]

T – P 
(H) 
[cm]

1 -3.69 -4.04 -4.02 -4.01 0.35 0.33• 0.32•
2 -3.93 -3.98 -3.91 -4.02 0.05 -0.02• 0.09
3 -4.27 -3.99 -3.99 -4.04 -0.28 -0.28e -0.23•
4 -3.81 -4.06 -4.04 -4.06 0.25 0.23• 0.25e
5 -3.97 -4.09 -4.03 -4.15 0.12 0.06• 0.18
6 -4.07 -4.11 -4.20 -4.15 0.04 0.13 0.08
7 -4.21 -4.12 -4.25 -4.21 -0.09 0.04• 0.00•
8 -4.27 -4.14 -4.27 -4.22 -0.13 0.00• -0.05•

Minimum 0.04 0.00 0.00
Maximum 0.35 0.33 0.32
Average 0.16 0.14 0.15
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As may be seen in Table 3, the improvement in prediction capabilities over 
polynomial regression model in the true validation process is visible but not so 
“spectacular” as in the case of crossvalidation presented in Table 2. These less 
“spectacular” results may result from the fact that benchmarks of the IInd class (old 
nomenclature) were determined with slightly less demanding accuracy criteria in 
comparison to benchmarks of the Ith class on which the transformation models were 
built. For the hybrid technique a half of points (marked with dots in Table 3) has 
lower values of the differences between the true height difference and that predicted 
(true prediction error) and one equal (marked with the letter “e”) comparing to the 
polynomial solution. In case of universal kriging the situation is slightly better because 
six out of eight points (marked with dots in Table 3) have lower true prediction errors 
than those obtained from polynomial regression model and similarly as before one is 
equal (marked with the letter “e”). The simple summary statistics of true prediction 
errors (minimum, maximum and average) are slightly lower for two kriging based 
transformation models. It is a pity that all eight test points are concentrated in one 
region (the northern part of the study area, see Figure 4 in Ligas and Banasik, 2012) 
because it gives only a selective image of the true prediction abilities. But, taking into 
account the overall results from tables (2) and (3) one may expect a better performance 
of the two kriging – based methods with a certain level of certainty. 

Transformation of new points basing on universal kriging may be carried out in 
two ways either by constructing a suitable GRID model representing height differences 
between two height datums dH and reading their values whenever it is necessary or 
by constructing and solving a suitable universal kriging system of equations with the 
knowledge of semivariogram (or covariance function) parameters and the parameters 
concerning the neighborhood for every new transformed point. For the case of hybrid 
technique presented here it is very similar to this written above and the difference is 
that the GRID model (or the solution to the ordinary kriging system) represents the 
residual part of the model this time. In order to obtain the total height difference the 
residual part must be added to the previously established trend model. 

As it may be seen the use of kriging either in compact form (universal kriging) 
or hybrid technique is more time consuming than the use of polynomial regression 
models. In the latter, the knowledge of parameters of correctly built model is the only 
thing required. In the kriging based approach the polynomial regression (trend surface 
analysis) is a preliminary step which is then used to extract additional information 
hidden in a residual part of the model. 

4. Conclusions

In the paper, the use of kriging – based local transformation between two height datums 
– Kronstadt’60 and Kronstadt’86 has been presented. Due to the existence of strong 
polynomial trend in height differences between the two datums a natural decision was 
to use kriging methods that take into account such regularity in the dataset. One of them 
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is universal kriging and the other is a hybrid method combining trend surface analysis 
and kriging on residuals. The two kriging – based approaches have been compared 
to each other as to the prediction capabilities and confronted with the results from 
the polynomial regression fi t presented in (Ligas and Banasik, 2012). Comparison of 
the three methods was done through the leave-one-out crossvalidation technique and 
on test points of the IInd class (old nomenclature) of the major vertical network. The 
results obtained in this study both in crossvalidation and true validation prove that the 
kriging based approach to local height transformation turned out to be more effective 
than the polynomial regression model in respect of predictive capabilities and that the 
structure hidden in the residual part of the model may improve prediction capabilities 
of the height transformation model. These very promising results encourage wider 
research on this problem to fully exploit the abilities of spatial prediction methods. 
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Streszczenie

W artykule przedstawiono lokalną transformację między dwoma układami wysokości (Kronsztadt’60 
oraz Kronsztadt’86, ostatni z nich będący obecnie częścią Państwowego Systemu Odniesień Prze-
strzennych w Polsce) z wykorzystaniem metod geostatystycznych – kriging. Ze względu na fakt, iż 
różnice wysokości między dwoma układami na punktach dostosowania wykazywały silny trend pod 
uwagę wzięto tylko te metody, które uwzględniają tego typu niestacjonarność procesu. Zastosowano 
dwie metody: hybrydową (Analiza Trendu Powierzchniowego z interpolacją reszt do modelu za pomocą 
krigingu zwyczajnego) oraz kriging uniwersalny. Przedstawiono rys teoretyczny obydwu metod. Doko-
nano porównania wyżej wymienionych metod pod względem ich zdolności predykcyjnych w procesie 
kroswalidacji modeli a zarazem otrzymane wyniki skonfrontowano z wynikami otrzymanymi z regresji 
wielomianowej. Otrzymane wyniki dowodzą, iż struktura ukryta w rezydualnej części modelu używana 
przez kriging może podnieść zdolności predykcyjne modelu transformacji. 


