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Abstract: A geodesic survey of an existing route requires one to determine the
approximation curve by means of optimization using the total least squares method
(TLSM). The objective function of the LSM was found to be a square of the Mahalanobis
distance in the adjustment field v. In approximation tasks, the Mahalanobis distance is the
distance from a survey point to the desired curve. In the case of linear regression, this
distance is codirectional with a coordinate axis; in orthogonal regression, it is codirectional
with the normal line to the curve. Accepting the Mahalanobis distance from the survey
point as a quasi-observation allows us to conduct adjustment using a numerically exact
parametric procedure.

Analysis of the potential application of splines under the NURBS (non-uniform
rational B-spline) industrial standard with respect to route approximation has identified
two issues: a lack of the value of the localizing parameter for a given survey point and
the use of vector parameters that define the shape of the curve. The value of the localizing
parameter was determined by projecting the survey point onto the curve. This projection,
together with the aforementioned Mahalanobis distance, splits the position vector of the
curve into two orthogonal constituents within the local coordinate system of the curve.
A similar system corresponds to points that form the control polygonal chain and allows
us to find their position with the help of a scalar variable that determines the shape of the
curve by moving a knot toward the normal line.
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1. Introduction

A geodesic survey of an existing route requires us to determine the approximation
curve by means of optimization using the total least squares method (TLSM). The
solution is obtained through a numerically complicated process called the generalized
adjustment (i.e., total least squares) and involves an orthogonal projection that was
investigated in detail by C. R. Rao (1982). In this article, we will investigate how
the properties of this projection relate to distances from the observed points to the
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approximated curve and whether the calculations can be streamlined by reducing
them to a parametric procedure, as in linear regression. Furthermore, we will conduct
route approximation using splines under the NURBS industrial standard. We will also
investigate how survey point distribution affects our ability to detect gross errors in
the observation system.

2. Formulating the objective function

Optimization involves identifying the minimum of a function in an area defined by
certain constraints. We begin the identification by specifying the objective function.
The least squares method (LSM), developed for independent observations by Gauss
and Lagrange, is a statistical algorithm used to assess congruity between the model
and observation.

. vV . . dj
min [ﬁ] = min Zi:lo_iz gdzie v; = L19 — L9PS (1)

The general formulation (Aitken, 1935; Knight et al., 2010) involves the
minimization of the objective function in its square form

min E = min v'C v
where C = COU(LObs, Lobs)’ v = Lobs _ Ladj (2)

and is derived from estimating parameters of random variables using the maximum
likelihood method and type II regression (Fisz, 1969; Rao, 1982).

Modeling a route involves a particular type of observation that forms vectors
of the observed positions of points. Today, such observations are most frequently
obtained via GPS technology. In this case, the observation vector comprises two-

dimensional subvectors that include an inseparable pair of coordinates of the -th

T
. T b b . L. . .
survey point Ty = [x,? 5, Vi S] and results in the division of the covariance matrix

of observations C into 2 x 2 block matrices that describe covariance pairs of survey
points

cov(xk, xj) cov(xk, yj)

C , i) =
ov(ri, 1) cov(yx;) cov(yiy;)

3)

The accuracy with which individual coordinates are determined may vary
significantly. Theoretically, one of the coordinates may be determined without error,
which results in the two-dimensional random variable becoming degenerate. For an
error-free measurement of the x coordinate (in practice, o, < 0.1 o, is sufficient), the
block diagonal matrix is
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0 0
Cov(ry, 1) = [ 2 ] 3a

(M Tr) 0 a2(y) (3a)

which leads to the linear regression y|x.

vy 2
z n k

min Yy _4 (a—y) (la)

Similarly, for an error-free measurement of the y coordinate, the diagonal block matrix
leads to the linear regression x|y.

3. Formulating constraints

Conditions limit the freedom of movement within the adjustment space and may bind
adjustments directly or through parameters.

3.1. Equation of a survey point on a curve

We will formulate the condition that binds adjustments of survey point coordinates
and that binds parameters p of the curve given by the implicit equation

T
F(%,9,P1, -, Pu) = 0. Each observed point [Xp2%,¥p”| fork=1,2,..,n>u

provides one restriction equation that binds the parameters we wish to determine.
These parameters describe the model and the observed coordinates of the survey point
(vector-based observation).

F(xﬁbS + Vo yobs + Vi P1) oo py) =0fork=12,..,n (4)

Equations (4) include adjustments and parameters. They lead to a numerically
complicated generalized adjustment formulation (i.e., total least squares, also known
as rigorous least squares) (Golub and Van Loan, 1980). Our task becomes easier if the
curve is defined by an explicit function of parameters and an error-free coordinate; for
instance, for o2(x;) = 0

v + vy, = f(xpPS, py, ., Pu) (4a)

which leads to the equation for the adjustment of the observational parametric LSM
procedure (1a)

obs

vy = FOR".P1 - Pu) IR (5)

that determines the simple regression curve y|x.
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3.2. Observational equation of a survey point as the Mahalanobis distance

The Mahalanobis distance (also called the weighted Euclidean distance) between two
points with position vectors X, y is given by

obs obs

Vy, = f(xk Pv ---rpu)_yk (6)
where C is a covariane matrix
For vectors that represent the observed and adjusted values
x—y=L — [ =y
the square of the Mahalanobis distance in the adjustment field v constitutes the objective
function of the LSM. If observations of survey point positions are independent, the

objective function is the sum of the squares of Mahalanobis distances from individual
survey points to the curve

— 2
E= 7.1 D;
-1
where D? = [VXi]T cov(x;, %) - cov(x;y;) ["Xj] (7)
) Vyil  [cov(y;, x;) COV(Yj:Yj) Vyj

The Mahalanobis distance from a survey point to the desired curve is a quasi-
observation that allows us to conduct adjustments using a parametric procedure.

3.3. Compound curves

The curves analyzed above were sets of points for which the coordinates are
consistent with the appropriate equations. A curve is a one-dimensional geometric
object composed of points in a multidimensional space. A curve can be described in
the parametric form using a function (relation) F that relates the scalar parameter ¢
to the vector-point P in space. Thus, the geometric relation scalar=>vector generates
plane curves in a given two-dimensional space R>R? and space curves in a three-
dimensional space R>R?.

P =F(t) (10)

The ¢ parameter determines the position on the curve. By calculating the differential
of the curve segment length, we obtain the natural parameter
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s=[V1+F2dt (11)

that provides the exact position of a point on the curve. In respect to the route, this
parameter constitutes the length of the route.

Curves composed of curve segments must meet additional conditions related to
parameters that ensure continuity and smoothness.

Curve continuity means that the start point of the subsequent curve segment Q(s)
overlaps the end point of the preceding curve segment.

P(s = Spax) = Q(s = 0) (12)

Curve smoothness means that tangents of curve segments overlap at points of
connection between these segments. In other words, the derivative of the curve is
continuous with respect to the natural parameter

(@) = @)y )

S=Smax

Similarly, we may require that second order derivatives and higher order
derivatives, or even their functions (e.g., the radii of the curvature), be continuous.
Conditions related to parameters most frequently apply in free adjustment and lead
to the boundarization procedure (Rao and Mitra, 1971) or the apparent connection
procedure (Nowak, 2000).

4. Geometric parametrization

The geometric projection scalar ¢ > vector P generates curves. We will now consider
parametrization that uses vectors in the analyzed space. The simplest curve is a line
on which any point described by the vector P meets the equation

P(t) =Wp*(1—1) + Wy *t (14)

where ¢ is the current parameter of the line and W, and W, are point-vectors of the
parameters.

Therefore, the point P(f) on the line is a vector given by a linear combination
of vectors of the parameters. In the end, we obtain a segment of the line W,-W,
for a given interval of the variable 0 < ¢ < 1. This is important because in practical
applications, we usually work with finite curve segments (Kiciak, 2000). Thus, formal
parameters have become the same vectors as survey points and the calculated points,
which facilitates transformations when algorithms are carried out as well as sharing
results with the user.
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Further examples include:
— a polynomial curve (Figure 1)

P(t) = X1 W =t (15)

— a curve defined by basis functions

P(t) = Xiso Wi * fi(t) (16)
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Fig. 1. Approximation with a parametric polynomial using the PUOgraf software, developed
by the author of this article

An interesting case of basis functions are Bernstein polynomials
BN (t) = (Tl‘) 1 -0 i=01,.,m 0<t<1 (17)
that describe analytic Bézier curves
P(t) = XiLo W * B['(t) (18)

which follow a control polygonal chain defined by a sequence of vertices
Wy, Wi, ..., W,
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The derivative of a Bézier curve (Kiciak, 2000)
P'(t) = n X1 (Wisq — W) * B (8) (19)

is a Bézier curve with a control polygonal chain that follows subtractions of vectors
of parameters. It follows that the tangents of the Bézier curve at end points overlap
with the first and last segments of the control polygonal chain. This enables us to
easily connect Bézier curve segments into a smooth spline. Derivatives of higher
order have control polygonal chains defined over subtractions of consecutive orders.
In particular, second order subtractions enable us to determine the curvature.

A set of curve segments is characterized by a vector of parameters composed of
subvectors, that is, points on control polygonal chains that correspond to appropriate
curve segments. These parameters are bound by conditions derived from the continuity
and smoothness requirements at join points between curve segments. Defining
smoothness conditions frequently proves difficult. A breakthrough took place when
parametrization of a polynomial Bézier curve in the form of a control polygonal chain
was applied due to the fact that the last segment of the polygonal chain is also the
tangent to the curve at the end point. A smooth connection between Bézier curves can
therefore be attained simply by extending the last segment of the control polygonal
chain into the first segment of the control polygonal chain for the neighboring curve
segment (B-spline). The ease with which curve segments can be smoothly connected
leads to the definition of the NURBS (non-uniform rational B-spline) industrial
standard, used to design complicated shapes (Humienny, 2009).

Let us consider two Bézier curve segments characterized by control polygonal

chains, (pg, P1»+-«» Pn) and (g, Ty, eee, Tp)

— the continuity of connection condition is Pu1o=0 (20)
— the smoothness of connection condition is  p,_;+r;-2r,=0 (21)
— the continuity of curvature condition is ry-Ppna-4(r;-ry)=0 (22)

We will analyze the procedure of an approximation task in a case when the shape
of the approximation curve determines the set of vectors that constitutes a geometric
parametrization. For instance, a B-spline composed of three curve segments of the
third degree requires:

— 3%4-2=10 vectors that form 3 connected control polygonal chains; knot vectors
at join points between curve segments overlap, which replaces two continuity
conditions (20);

— those vectors of parameters must satisfy two conditions for a smooth connection
between curve segments (21).

Parametric equations (10) enable a direct generation of coordinates of any point on

the curve for a given value of the parameter ¢. It is a perfect tool for the designer and

the developer (viz. the NURBS standard); however, in approximation tasks, the value
of the parameter ¢ is unknown. We will write the vector equation (10) in the form of
two scalar equations
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x = g(t) (10a)
y = h(t) (10b)

The desired value of the parameter ¢ for a survey point can be calculated by solving
the equation (10a)

t= g—l(xObS) (23)
Substituting into (10b), we obtain

y = h(g~'(x°")) (24)

The value of the y coordinate calculated in this manner is a special case of equation
(4a) that is present in linear regression (1a).

The above considerations prove that the coordinates of a survey point do not
constitute two separate observations; for this to be true, we would need to know
the value of the parameter that localizes the survey point on the curve. As far as
orthogonal regression is concerned, the localizing parameter is obtained by projecting
the survey point onto the curve. Such projection at the same time allows us to identify
curve segments in the case of compound curves.

5. Excessive parametrization

To connect curve segments, we need to introduce conditions for the continuity of the
function and its derivatives. This clearly indicates that the number of parameters in
a spline is too great; in the case of geometric parametrization, such excess involves
vectors rather than scalars. Geometric parametrization, while very elegant in form,
frequently creates a latent excess of parameters by replacing scalars with vectors. We
will demonstrate this issue on the basis of a line described by Equation (14). Equation
(14) includes two vector parameters, and the equation for a line in the normal form
can be written using two scalar parameters (the azimuth of the normal line and the
distance to the origin).

The tangent component of the vector of parameters determines the location on
the curve, while the normal component determines the shape of the curve. Therefore,
moving the knot towards the second vector derivative will have the greatest effect on
the shape of the curve (Nowak, 2001).
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5.1. Replacing point parametrization with directional parametrization

The normal component has for a long time been regarded as a means to determine
shape. As a result, the normal component exists within theoretical considerations in
the form of a natural equation of a curve that describes curvature as a function of
curve segment length. In practical terms, it is used to adjust train tracks by aligning
sagittas. I have applied the method of manipulating knots by moving them along
a given direction (moving the normal line closer) using a scalar parameter for
modernizing train routes in Katowice Ironworks by means of orthogonal regression
(Distinction of the President of the Head Office of Land Surveying and Cartography
from 1980). The above solution can applied to approximate a route through splines
under the NURBS standard. We may indirectly obtain the required parameterization
in the form of vectors that constitute the control curve by using intermediate scalar
variables u; and second order subtractions that constitute the approximation of the
direction of the normal line

W; = WP+ (WPP — 2w PP + WPP) (25)

i+1

5.2. Constructing unconditional parametrization of a route composed
of circular and line segments

Route modeling is a typical task of engineering geodesy. The route is usually
composed of line segments and circular segments, which ensures smoothness (and
constitutes a spline). Sometimes, transitional curves are used to ensure continuity of
curvature. The aforementioned geometric parametrization of polynomial splines uses
sets of vectors of parameters related to individual curve segments; it also makes use
of conditions for connections between them. Such a procedure involves working with
an excessive number of parameters, as can best be seen in the continuity condition.
We will attempt to construct an unconditional parametrization of a route composed
of circular and line segments. Circular segments connected through tangents create
a smooth route. Therefore, the crucial part of the desired spline are circular segments,
which can be easily parametrized by providing the coordinates of the center of the
circle together with the radius (x, y, ). The same convention allows us to write the start
and end points of the route (as well as sharp corners if needed) by treating these points
as the boundary case of a null-radius circle. The last step is to determine the manner
in which the circles can connect through tangents. Because the route is a linear object,
we begin from the start point (x,, o, 7, = 0). The first line segment is the tangent that
runs from the start point to the first circle (x,y,,7,). We need to choose between two
cases: the left-turn or the right-turn. We can write the direction of the turn in the
form of the binary orientation of the radius of the circle: a right-turn corresponds to
a positive radius +r, while a left-turn corresponds to a negative radius —. Thus, we
have constructed a route parametrization limited to indispensable parameters only,
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which greatly facilitates describing the route and reduces approximation tasks to the
simplest case of the least squares method. Figure 2 shows a route composed of two
circular segments.
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Fig. 2. A route described by four points (the start and end points have » = 0; other points have either
a positive radius, which corresponds to a right-turn, or a negative radius, which corresponds
to a left-turn; the radius is written as the z coordinate)

Such parametrization not only allows us to obtain the values of parameters of the
approximation curve for a set of survey points, but also to adjust these values so that
the route crosses a given point or has a particular radius of the circular segment; this
enables us to modernize existing routes, rather than only adjusting them.

6. Designing geodesic surveys of routes

The object of accuracy- and reliability-based design of regressive systems is the
number and distribution of points. In other words, we only manipulate the observations,
while the variables are determined by our choice of the regression function, similar
to classical networks. Usually, all survey points meet accuracy requirements for route
surveying. In such cases, the analysis of parameter accuracy is conducted for formal,
rather than technical, reasons. Detecting flaws in the route geometry in the form of
unacceptable deviations of survey points from the approximated route requires us to
compare the survey points to the standard deviation of the adjustment rather than to
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the observation. Furthermore, to unambiguously detect a flaw, the observation system
has to meet reliability requirements, just as in observations that constitute a network
(Proszynski, 1994). The PUOgraf software, developed by the author of this article,
can facilitate the procedures described above. The software was created to assist
in computer-aided design (CAD) of various observation (network and regression)
systems.

It has been shown that in the case of a closed curve, we may achieve reliability
through an appropriately dense distribution of survey points (Nowak, 2007); in the
case of an open curve, we also need to strengthen the end points with additional survey
points. The considerations above lead to the conclusion that the shape of the curve
in a vector space is unimportant for reliability-based design. Instead, the determining
factor is the distribution of observations in the domain of a scalar parameter. This
means that we can create typical projects for use in production instead of individually
designing every observation system.

7. Conclusions

The objective function of the LSM was found to be a square of the Mahalanobis
distance in the adjustment field v. In approximation tasks, the Mahalanobis distance
is the distance from a survey point to the desired curve. Accepting this distance
as a quasi-observation allows us to conduct adjustment using a numerically exact
parametric procedure.

Analysis of the potential application of splines under the NURBS industrial
standard with respect to route approximation has identified two issues: a lack of
the value of the localizing parameter for a given survey point and the use of vector
parameters that define the shape of the curve. The value of the localizing parameter
was determined by projecting the survey point onto the curve. This projection, together
with the aforementioned Mahalanobis distance, splits the position vector of the curve
into two orthogonal constituents within the local coordinate system of the curve. This
system allows us to obtain the position of points that create the control polygonal
chain of the Bézier function using a scalar variable that determines the shape of the
curve by moving the knot in the direction of the normal line.
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Streszczenie

Inwentaryzacja istniejacej trasy wymaga wyznaczenia krzywej aproksymujacej w wyniku optymalizacji
realizowanej metoda najmniejszych kwadratow (TLSM). Analiza funkcji celu LSM wykazata, ze jest
ona kwadratem odlegtosci Mahalanobisa w przestrzeni poprawek. W zadaniach aproksymacyjnych
odlegtos¢ Mahalanobisa jest miarg odstgpu pikiety od wyznaczanej krzywej, w przypadku regresji zwy-
klej odstep ten ma kierunek osi uktadu wspotrzednych a w przypadku regresji ortogonalnej odstep
ma kierunek normalnej do krzywej. Uznanie odleglosci Mahalanobisa pikiety od wyznaczanej krzy-
wej za quasi-obserwacje pozwala na wykonanie wyréwnania dopracowang numerycznie procedurg
parametryczna.
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Badanie mozliwosci zastosowania funkcji sklejanych w przemystowym standardzie NURBS do
aprosymacji przebiegu trasy wykazato dwa problemy: brak warto$ci parametru lokalizujacego dla pikiety
oraz operowanie parametrami wektorowymi defilujacymi ksztalt krzywej. Wartos¢ parametru lokalizu-
jacego wyznaczono przez rzut pikiety na krzywa — lacznie z opisang wyzej odlegloscia Mahalanobisa
stanowi on rozktad wektora wodzacego pikiety na dwie sktadowe podtuzng i poprzeczng w lokalnym
uktadzie krzywej. Analogiczny uktad w punktach tworzacych tamang kontrolng funkcji Beziera pozwala
na wyznaczenie ich polozenia za posrednictwem niewiadomej skalarnej modelujacej ksztatt krzywej po-
przez przesunigcia wezta w kierunku normalnej.



