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Abstract: A geodesic survey of an existing route requires one to determine the 
approximation curve by means of optimization using the total least squares method 
(TLSM). The objective function of the LSM was found to be a square of the Mahalanobis 
distance in the adjustment fi eld ν. In approximation tasks, the Mahalanobis distance is the 
distance from a survey point to the desired curve. In the case of linear regression, this 
distance is codirectional with a coordinate axis; in orthogonal regression, it is codirectional 
with the normal line to the curve. Accepting the Mahalanobis distance from the survey 
point as a quasi-observation allows us to conduct adjustment using a numerically exact 
parametric procedure.
 Analysis of the potential application of splines under the NURBS (non-uniform 
rational B-spline) industrial standard with respect to route approximation has identifi ed 
two issues: a lack of the value of the localizing parameter for a given survey point and 
the use of vector parameters that defi ne the shape of the curve. The value of the localizing 
parameter was determined by projecting the survey point onto the curve. This projection, 
together with the aforementioned Mahalanobis distance, splits the position vector of the 
curve into two orthogonal constituents within the local coordinate system of the curve. 
A similar system corresponds to points that form the control polygonal chain and allows 
us to fi nd their position with the help of a scalar variable that determines the shape of the 
curve by moving a knot toward the normal line.
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1. Introduction

A geodesic survey of an existing route requires us to determine the approximation 
curve by means of optimization using the total least squares method (TLSM). The 
solution is obtained through a numerically complicated process called the generalized 
adjustment (i.e., total least squares) and involves an orthogonal projection that was 
investigated in detail by C. R. Rao (1982). In this article, we will investigate how 
the properties of this projection relate to distances from the observed points to the 
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approximated curve and whether the calculations can be streamlined by reducing 
them to a parametric procedure, as in linear regression. Furthermore, we will conduct 
route approximation using splines under the NURBS industrial standard. We will also 
investigate how survey point distribution affects our ability to detect gross errors in 
the observation system.

2. Formulating the objective function

Optimization involves identifying the minimum of a function in an area defi ned by 
certain constraints. We begin the identifi cation by specifying the objective function. 
The least squares method (LSM), developed for independent observations by Gauss 
and Lagrange, is a statistical algorithm used to assess congruity between the model 
and observation.

 min = min      gdzie v = L L   (1)

The general formulation (Aitken, 1935; Knight et al., 2010) involves the 
minimization of the objective function in its square form

  =    

where  = , ,    =    (2)

and is derived from estimating parameters of random variables using the maximum 
likelihood method and type II regression (Fisz, 1969; Rao, 1982). 

Modeling a route involves a particular type of observation that forms vectors 
of the observed positions of points. Today, such observations are most frequently 
obtained via GPS technology. In this case, the observation vector comprises two-
dimensional subvectors that include an inseparable pair of coordinates of the k-th 
survey point = ,   and results in the division of the covariance matrix 
of observations C into 2 × 2 block matrices that describe covariance pairs of survey 
points

 , = , ,, ,   (3)

The accuracy with which individual coordinates are determined may vary 
signifi cantly. Theoretically, one of the coordinates may be determined without error, 
which results in the two-dimensional random variable becoming degenerate. For an 
error-free measurement of the x coordinate (in practice, σx < 0.1 σy is suffi cient), the 
block diagonal matrix is
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 ( , ) = 0 00 ( )   (3a)

which leads to the linear regression y|x. 

     (1a)

Similarly, for an error-free measurement of the y coordinate, the diagonal block matrix 
leads to the linear regression x|y. 

3. Formulating constraints 

Conditions limit the freedom of movement within the adjustment space and may bind 
adjustments directly or through parameters.

3.1. Equation of a survey point on a curve 

We will formulate the condition that binds adjustments of survey point coordinates 
and that binds parameters p of the curve given by the implicit equation ( , , , … , ) = . Each observed point ,  = , , … ,   
provides one restriction equation that binds the parameters we wish to determine. 
These parameters describe the model and the observed coordinates of the survey point 
(vector-based observation).

 F x + v , y + v , p , … p = 0 for k = 1,2, … , n   (4) 

Equations (4) include adjustments and parameters. They lead to a numerically 
complicated generalized adjustment formulation (i.e., total least squares, also known 
as rigorous least squares) (Golub and Van Loan, 1980). Our task becomes easier if the 
curve is defi ned by an explicit function of parameters and an error-free coordinate; for 
instance, for σ 2(xk) = 0

 + = , , … ,    (4a)

which leads to the equation for the adjustment of the observational parametric LSM 
procedure (1a)

  = , , … ,   (5)

that determines the simple regression curve y|x. 
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3.2. Observational equation of a survey point as the Mahalanobis distance

The Mahalanobis distance (also called the weighted Euclidean distance) between two 
points with position vectors x,  y is given by

 
y= , , … ,   (6)

where C is a covariane matrix

For vectors that represent the observed and adjusted values 

 = =  

the square of the Mahalanobis distance in the adjustment fi eld v constitutes the objective 
function of the LSM. If observations of survey point positions are independent, the 
objective function is the sum of the squares of Mahalanobis distances from individual 
survey points to the curve

 E=   
 where  D = vv cov(x , x ) cov(x , y )cov(y , x ) cov(y , y ) vv    (7)

The Mahalanobis distance from a survey point to the desired curve is a quasi-
observation that allows us to conduct adjustments using a parametric procedure.

3.3. Compound curves 

The curves analyzed above were sets of points for which the coordinates are 
consistent with the appropriate equations. A curve is a one-dimensional geometric 
object composed of points in a multidimensional space. A curve can be described in 
the parametric form using a function (relation) F that relates the scalar parameter t 
to the vector-point P in space. Thus, the geometric relation scalarvector generates 
plane curves in a given two-dimensional space RR2 and space curves in a three-
dimensional space RR3.

 = ( )  (10)

The t parameter determines the position on the curve. By calculating the differential 
of the curve segment length, we obtain the natural parameter



Geodesic survey and modernization of a route as the task of optimization 79

 = 1 +   (11)

that provides the exact position of a point on the curve. In respect to the route, this 
parameter constitutes the length of the route.

Curves composed of curve segments must meet additional conditions related to 
parameters that ensure continuity and smoothness.

Curve continuity means that the start point of the subsequent curve segment Q(s) 
overlaps the end point of the preceding curve segment.

  ( = ) = ( = 0)  (12)

Curve smoothness means that tangents of curve segments overlap at points of 
connection between these segments. In other words, the derivative of the curve is 
continuous with respect to the natural parameter 

 =   (13)

Similarly, we may require that second order derivatives and higher order 
derivatives, or even their functions (e.g., the radii of the curvature), be continuous. 
Conditions related to parameters most frequently apply in free adjustment and lead 
to the boundarization procedure (Rao and Mitra, 1971) or the apparent connection 
procedure (Nowak, 2000). 

4. Geometric parametrization

The geometric projection scalar t vector P generates curves. We will now consider 
parametrization that uses vectors in the analyzed space. The simplest curve is a line 
on which any point described by the vector P meets the equation

 ( ) = (1 ) +    (14)

where t is the current parameter of the line and W0 and W1 are point-vectors of the 
parameters. 

Therefore, the point P(t) on the line is a vector given by a linear combination 
of vectors of the parameters. In the end, we obtain a segment of the line W0-W1 
for a given interval of the variable 0 < t < 1. This is important because in practical 
applications, we usually work with fi nite curve segments (Kiciak, 2000). Thus, formal 
parameters have become the same vectors as survey points and the calculated points, 
which facilitates transformations when algorithms are carried out as well as sharing 
results with the user.
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Further examples include: 
– a polynomial curve (Figure 1)

  ( ) =   (15) 

– a curve defi ned by basis functions

  ( ) = ( )  (16)

Fig. 1. Approximation with a parametric polynomial using the PUOgraf software, developed 
by the author of this article

An interesting case of basis functions are Bernstein polynomials 

 ( ) = (1 )        = 0,1, … , ;    0 1  (17)

that describe analytic Bézier curves

   ( ) = ( )   (18)

which follow a control polygonal chain defi ned by a sequence of vertices 
W0, W1, …, Wn. 
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The derivative of a Bézier curve (Kiciak, 2000)

 ( ) = ( ) ( )   (19)

is a Bézier curve with a control polygonal chain that follows subtractions of vectors 
of parameters. It follows that the tangents of the Bézier curve at end points overlap 
with the fi rst and last segments of the control polygonal chain. This enables us to 
easily connect Bézier curve segments into a smooth spline. Derivatives of higher 
order have control polygonal chains defi ned over subtractions of consecutive orders. 
In particular, second order subtractions enable us to determine the curvature. 

A set of curve segments is characterized by a vector of parameters composed of 
subvectors, that is, points on control polygonal chains that correspond to appropriate 
curve segments. These parameters are bound by conditions derived from the continuity 
and smoothness requirements at join points between curve segments. Defi ning 
smoothness conditions frequently proves diffi cult. A breakthrough took place when 
parametrization of a polynomial Bézier curve in the form of a control polygonal chain 
was applied due to the fact that the last segment of the polygonal chain is also the 
tangent to the curve at the end point. A smooth connection between Bézier curves can 
therefore be attained simply by extending the last segment of the control polygonal 
chain into the fi rst segment of the control polygonal chain for the neighboring curve 
segment (B-spline). The ease with which curve segments can be smoothly connected 
leads to the defi nition of the NURBS (non-uniform rational B-spline) industrial 
standard, used to design complicated shapes (Humienny, 2009).

Let us consider two Bézier curve segments characterized by control polygonal 
chains, (p0, p1, …, pn) and (r0, r1, …, rn)
– the continuity of connection condition is  pn-r0 = 0 (20)
– the smoothness of connection condition is  pn-1+r1-2ro = 0 (21)
– the continuity of curvature condition is r2-pn-2-4(r1-r0) = 0 (22)

We will analyze the procedure of an approximation task in a case when the shape 
of the approximation curve determines the set of vectors that constitutes a geometric 
parametrization. For instance, a B-spline composed of three curve segments of the 
third degree requires:
– 3*4-2 = 10 vectors that form 3 connected control polygonal chains; knot vectors 

at join points between curve segments overlap, which replaces two continuity 
conditions (20); 

– those vectors of parameters must satisfy two conditions for a smooth connection 
between curve segments (21).

Parametric equations (10) enable a direct generation of coordinates of any point on 
the curve for a given value of the parameter t. It is a perfect tool for the designer and 
the developer (viz. the NURBS standard); however, in approximation tasks, the value 
of the parameter t is unknown. We will write the vector equation (10) in the form of 
two scalar equations
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 = ( )  (10a)

 = ( )  (10b)

The desired value of the parameter t for a survey point can be calculated by solving 
the equation (10a)

 = ( )  (23)

Substituting into (10b), we obtain

 = ( ( ))  (24)

The value of the y coordinate calculated in this manner is a special case of equation 
(4a) that is present in linear regression (1a).

The above considerations prove that the coordinates of a survey point do not 
constitute two separate observations; for this to be true, we would need to know 
the value of the parameter that localizes the survey point on the curve. As far as 
orthogonal regression is concerned, the localizing parameter is obtained by projecting 
the survey point onto the curve. Such projection at the same time allows us to identify 
curve segments in the case of compound curves.

5. Excessive parametrization

To connect curve segments, we need to introduce conditions for the continuity of the 
function and its derivatives. This clearly indicates that the number of parameters in 
a spline is too great; in the case of geometric parametrization, such excess involves 
vectors rather than scalars. Geometric parametrization, while very elegant in form, 
frequently creates a latent excess of parameters by replacing scalars with vectors. We 
will demonstrate this issue on the basis of a line described by Equation (14). Equation 
(14) includes two vector parameters, and the equation for a line in the normal form 
can be written using two scalar parameters (the azimuth of the normal line and the 
distance to the origin). 

The tangent component of the vector of parameters determines the location on 
the curve, while the normal component determines the shape of the curve. Therefore, 
moving the knot towards the second vector derivative will have the greatest effect on 
the shape of the curve (Nowak, 2001).
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5.1. Replacing point parametrization with directional parametrization

The normal component has for a long time been regarded as a means to determine 
shape. As a result, the normal component exists within theoretical considerations in 
the form of a natural equation of a curve that describes curvature as a function of 
curve segment length. In practical terms, it is used to adjust train tracks by aligning 
sagittas. I have applied the method of manipulating knots by moving them along 
a given direction (moving the normal line closer) using a scalar parameter for 
modernizing train routes in Katowice Ironworks by means of orthogonal regression 
(Distinction of the President of the Head Offi ce of Land Surveying and Cartography 
from 1980). The above solution can applied to approximate a route through splines 
under the NURBS standard. We may indirectly obtain the required parameterization 
in the form of vectors that constitute the control curve by using intermediate scalar 
variables ui and second order subtractions that constitute the approximation of the 
direction of the normal line 

 = + +    (25)

5.2. Constructing unconditional parametrization of a route composed 
of circular and line segments

Route modeling is a typical task of engineering geodesy. The route is usually 
composed of line segments and circular segments, which ensures smoothness (and 
constitutes a spline). Sometimes, transitional curves are used to ensure continuity of 
curvature. The aforementioned geometric parametrization of polynomial splines uses 
sets of vectors of parameters related to individual curve segments; it also makes use 
of conditions for connections between them. Such a procedure involves working with 
an excessive number of parameters, as can best be seen in the continuity condition. 
We will attempt to construct an unconditional parametrization of a route composed 
of circular and line segments. Circular segments connected through tangents create 
a smooth route. Therefore, the crucial part of the desired spline are circular segments, 
which can be easily parametrized by providing the coordinates of the center of the 
circle together with the radius (x, y, r). The same convention allows us to write the start 
and end points of the route (as well as sharp corners if needed) by treating these points 
as the boundary case of a null-radius circle. The last step is to determine the manner 
in which the circles can connect through tangents. Because the route is a linear object, 
we begin from the start point (x0, y0, r0 = 0). The fi rst line segment is the tangent that 
runs from the start point to the fi rst circle (x1, y1, r1). We need to choose between two 
cases: the left-turn or the right-turn. We can write the direction of the turn in the 
form of the binary orientation of the radius of the circle: a right-turn corresponds to 
a positive radius +r, while a left-turn corresponds to a negative radius –r. Thus, we 
have constructed a route parametrization limited to indispensable parameters only, 
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which greatly facilitates describing the route and reduces approximation tasks to the 
simplest case of the least squares method. Figure 2 shows a route composed of two 
circular segments.

 

Fig. 2. A route described by four points (the start and end points have r = 0; other points have either 
a positive radius, which corresponds to a right-turn, or a negative radius, which corresponds 

to a left-turn; the radius is written as the z coordinate)

Such parametrization not only allows us to obtain the values of parameters of the 
approximation curve for a set of survey points, but also to adjust these values so that 
the route crosses a given point or has a particular radius of the circular segment; this 
enables us to modernize existing routes, rather than only adjusting them.

6. Designing geodesic surveys of routes

The object of accuracy- and reliability-based design of regressive systems is the 
number and distribution of points. In other words, we only manipulate the observations, 
while the variables are determined by our choice of the regression function, similar 
to classical networks. Usually, all survey points meet accuracy requirements for route 
surveying. In such cases, the analysis of parameter accuracy is conducted for formal, 
rather than technical, reasons. Detecting fl aws in the route geometry in the form of 
unacceptable deviations of survey points from the approximated route requires us to 
compare the survey points to the standard deviation of the adjustment rather than to 
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the observation. Furthermore, to unambiguously detect a fl aw, the observation system 
has to meet reliability requirements, just as in observations that constitute a network 
(Prószyński, 1994). The PUOgraf software, developed by the author of this article, 
can facilitate the procedures described above. The software was created to assist 
in computer-aided design (CAD) of various observation (network and regression) 
systems.

It has been shown that in the case of a closed curve, we may achieve reliability 
through an appropriately dense distribution of survey points (Nowak, 2007); in the 
case of an open curve, we also need to strengthen the end points with additional survey 
points. The considerations above lead to the conclusion that the shape of the curve 
in a vector space is unimportant for reliability-based design. Instead, the determining 
factor is the distribution of observations in the domain of a scalar parameter. This 
means that we can create typical projects for use in production instead of individually 
designing every observation system.

7. Conclusions

The objective function of the LSM was found to be a square of the Mahalanobis 
distance in the adjustment fi eld v. In approximation tasks, the Mahalanobis distance 
is the distance from a survey point to the desired curve. Accepting this distance 
as a quasi-observation allows us to conduct adjustment using a numerically exact 
parametric procedure.

Analysis of the potential application of splines under the NURBS industrial 
standard with respect to route approximation has identifi ed two issues: a lack of 
the value of the localizing parameter for a given survey point and the use of vector 
parameters that defi ne the shape of the curve. The value of the localizing parameter 
was determined by projecting the survey point onto the curve. This projection, together 
with the aforementioned Mahalanobis distance, splits the position vector of the curve 
into two orthogonal constituents within the local coordinate system of the curve. This 
system allows us to obtain the position of points that create the control polygonal 
chain of the Bézier function using a scalar variable that determines the shape of the 
curve by moving the knot in the direction of the normal line.
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Streszczenie

Inwentaryzacja istniejącej tras y wymaga wyznaczenia krzywej aproksymującej w wyniku optymalizacji 
realizowanej metodą najmniejszych kwadratów (TLSM). Analiza funkcji celu LSM wykazała, że jest 
ona kwadratem odległości Mahalanobisa w przestrzeni poprawek.  W zadaniach aproksymacyjnych 
odległość Mahalanobisa jest miarą odstępu pikiety od wyznaczanej krzywej, w przypadku regresji zwy-
kłej odstęp ten ma kierunek osi układu współrzędnych a w przypadku regresji ortogonalnej odstęp 
ma kierunek normalnej do krzywej. Uznanie odległości Mahalanobisa pikiety od wyznaczanej krzy-
wej za quasi-obserwację pozwala na wykonanie wyrównania dopracowaną numerycznie procedurą 
 parametryczną.
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 Badanie możliwości zastosowania funkcji sklejanych w przemysłowym standardzie NURBS do 
aprosymacji przebiegu trasy wykazało dwa problemy: brak wartości parametru lokalizującego dla pikiety 
oraz operowanie parametrami wektorowymi defi lującymi kształt krzywej. Wartość parametru lokalizu-
jącego wyznaczono przez rzut pikiety na krzywą – łącznie z opisaną wyżej odległością Mahalanobisa 
stanowi on rozkład wektora wodzącego pikiety na dwie składowe podłużną i poprzeczną w lokalnym 
układzie krzywej. Analogiczny układ w punktach tworzących łamaną kontrolną funkcji Beziera pozwala 
na wyznaczenie ich położenia za pośrednictwem niewiadomej skalarnej modelującej kształt krzywej po-
przez przesunięcia węzła w kierunku normalnej.


