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Abstract: From the theory of reliability it follows that the greater the observational 
redundancy in a network, the higher is its level of internal reliability. However, taking 
into account physical nature of the measurement process one may notice that the planned 
additional observations may increase the number of potential gross errors in a network, 
not raising the internal reliability to the theoretically expected degree. Hence, it is 
necessary to set realistic limits for a suffi cient number of observations in a network. An 
attempt to provide principles for fi nding such limits is undertaken in the present paper. An 
empirically obtained formula (Adamczewski 2003) called there the law of gross errors, 
determining the chances that a certain number of gross errors may occur in a network, 
was taken as a starting point in the analysis. With the aid of an auxiliary formula derived 
on the basis of the Gaussian law, the Adamczewski formula was modifi ed to become 
an explicit function of the number of observations in a network. This made it possible 
to construct tools necessary for the analysis and fi nally, to formulate the guidelines for 
determining the upper-bounds for internal reliability indices. Since the Adamczewski 
formula was obtained for classical networks, the guidelines should be considered as 
an introductory proposal requiring verifi cation with reference to modern measuring 
techniques. 
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1. Introduction

The internal reliability criteria based on the relationships between the network 
responses to a single gross error or multiple gross errors (Prószyński, 1997) settle 
lower-bounds that ensure effective detection of k gross errors (k  =  1, 2, 3, 4). For 
each value of k, the bounds expressed in terms of the internal reliability indices 
imply a necessary number of observations in a network. It follows from the theory 
of internal reliability that, the greater the number of observations in a network, the 
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greater the values of internal reliability indices, each asymptotically approaching 1 
in systems with minimal constraints on parameters. A specially high importance of 
some engineering survey tasks may require high network reliability which, according 
to theory, implies the use of excessively great number of observations to effectively 
detect outliers. There are, however, the following two counteracting factors that are 
the arguments in favour of introducing certain limits for increasing the number of 
observations beyond those resulting from the lower-bounds:
i. the additional observations may contain new gross errors, thus increasing the total 

number of gross errors;
ii. the increase in the number of observations will result in a rise of the total cost 

of fi eldwork (due to increase in measurement time, involvement of staff and 
instrumentation).
Hence, there appears a problem of determining the upper-bounds for the values 

of internal reliability indices that would take into account the infl uence of the above 
mentioned two factors, and be a sort of compromise between theory and practice. Such 
upper-bounds would specify suffi cient number of observations in a network. In the 
case of the fi rst factor (i) we would need a knowledge on frequency of occurrence of 
gross errors. The problem is that gross errors (mistakes being one of their forms) are 
rather unpredictable due to their very nature, so they do not obey any law, including 
Gaussian law; they behave differently under different conditions, such as for example 
type of observation or degree of automation of observation process. An attempt 
to formulate a rule that would describe behaviour of gross errors in networks was 
made in (Adamczewski, 2003), where a formula called the law of gross errors was 
proposed. The proposal was taken as a starting point in the present analysis. However, 
the law did not operate explicitly with the number of observations in a network. The 
inspiration for the present author how to approach this problem were the introductory 
comments in (Knight et al., 2010), concerning the number of potential gross errors 
that may occur in a network of specifi ed number of observations. 

To take into account the second factor (ii) we need to know the cost of network 
measurement expressed as a function of the number of observations. Due to the 
lack of practical examples of such a function, the economical aspect will only be 
signalized. 

The problem of realistic upper-bounds for network internal reliability, which is 
of vital importance especially for engineering surveying tasks, has so far not been 
discussed in geodetic professional literature, so the approach presented in this paper 
is a proposal requiring further studies. 

2.  Modifi ed form of the Adamczewski law of gross errors 

Assuming a generalized defi nition of gross error covering measurement errors 
both random and systematic, as well as mistakes made in measurement (e.g. false 
identifi cation of the measured quantity), Adamczewski formulated on the basis of 
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practical experiments a law of gross errors, defi ned by the probability p(k) that k 
gross errors occur in a network (Adamczewski 2003), i.e. 

 k)a1(a)k(p     k = 0, 1, 2, 3, …  (1)

where

 a = p(0);   1)k(p
0k

 .

The material for the experiment were the observation sets of distances and of 
directions formed on the basis of post-adjustment documentation for 63 2nd-order 
networks of different size, measured in the period 1979 ÷ 1987. No mention was 
made about magnitudes of the detected outliers. 

Although having realistic setting, the law does not operate explicitly with a number 
of observations in a network. It cannot be used directly for the purpose of the present 
research since the upper-bounds of network reliability sought for should be expressed 
in terms of the number of observations. 

Seeking an auxiliary formula free from the above disadvantage, that might 
approximate the Adamczewski law, we shall concentrate on the Gaussian-type random 
errors of excessive magnitudes, i.e. 

 r       r = 3 (2)

where σ is a standard deviation of measurement of a certain quantity in a network. 
Obviously, these errors represent only a certain part of a broad spectrum of gross 

errors. Nevertheless they have a clear probability model. 
Hence, in our approach the set of all possible random errors that may occur in 

a single measurement can be split into the following two, mutually complementary, 
subsets of Gaussian-type random errors:

  OE r:    ordinary errors 

   r:GE     gross errors 

Assigning 0 to each element of OE and 1 to each element of GE, we may consider 
a variable X with a 0,1 distribution, defi ned by 

 P(X = 0) = 1 – p,  P(X = 1) = p 

where p is determined from the normal distribution N(0, σ) for a specifi ed value of 
the coeffi cient r as in (2). For r = 3, we get p = 0.0027. 

To obtain the probability that k gross errors occur in n observations, we shall 
introduce a variable Y having binomial distribution, defi ned by
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  knk p)(1p n
k)kY(P     k = 0, 1, 2, … , n  (3)

where 

k)!(nk!
n!n

k  ; n)p1()0Y(P , which corresponds to parameter a in the 

formula (1).

The formula (3) can be termed the probability-derived formula for occurence of 
Gaussian-type gross errors. 

To enable comparison of the formulas (1) and (3) we determine the values of 
parameter a in (1) from the relationship 

 n)p1(a  (4)

already given in explanations under the formula (3). Graphs for both the formulas are 
shown in Fig. 1 for four chosen values of n, i.e. 50, 150, 300, 500 and p = 0.0027. 
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 Fig. 1. Comparison of the probability-derived formula (3) with the Adamczewski law (1), 
denoted by (PD) and (AZ) respectively
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Although for n = 50 and n = 150 the graphs in Figure 1 run close to each other, 
the discrepancies between them appear for greater n (see n = 300 and n = 500). With 
the increase in the number of observations a trend can be clearly observed, that the 
formula (3) assigns higher probability for k = 1 (n = 300) or for k = 1 and k = 2 
(n = 500), and lower probability for k = 3 and k = 4 (n = 300) and for k = 4 (n = 500). 
The explanation of these differences is very diffi cult, since both the formulas are 
hardly comparable. The formula (3) does not cover mistakes of any type as well as 
gross errors that may undergo non-Gaussian distributions. On the other hand, with 
the range of magnitudes as in (2) the formula (3) takes into account additionally the 
gross errors falling within the interval 63  that are undetectable according 
to the MDB formula (Baarda 1968) with h = 0.5, and thus could not be recorded in 
empirical tests carried out by Adamczewski. 

The closeness of the graph (PD) to the graph (AZ) up to n being around 300, 
enables us to use the formula (3) for modifi cation of the formula (1) so that the latter 
becomes a function of n, i.e. assumes the form necessary for determining the upper-
bounds of network internal reliability.

Substituting into (1) the relationship (4) as was used for constructing the graphs in 
Fig. 1, we obtain the modifi ed form of Adamczewski formula, as shown below 

 knn ])p1(1[)p1()p(k     k = 0, 1, 2, …, n (5)

For a given value of k the expression in (5) is a geometric series, with the sum of r 
terms, where r = k + 1, being 

 
1knp)1(11rS .  (6)

e.g. for n = 1, we have k + 1 = 2 terms: for k = 0 and for k = 1.

The relationship (6) can be obtained immediately on basis of the well known 

formula for Sr , in this analysis taking the form as 
q1

)rq1(a
rS , where: a = (1 – p)n; 

q = 1 – (1 – p)n ; r = k + 1. 

From the properties of geometric series it follows that with 1 – (1 –p)n < 1, the 
sum Sr as in (6) converges with k   to 1. Since Sr corresponds to P(Y  k) = F(k), 
it satisfi es the requirement for cumulative function, i.e. F(k) = 1, but it is achieved 
beyond the limit for k being k = n. However, the numerical tests show a high 
convergence rate of Sr, such that even for n = 1, k = 1 where Sr = 0.999993, the 
discrepancy from 1 can be neglected. 
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3. Guidelines for determining the upper-bounds for internal reliability indices

Strict relationships defi ning the upper-bounds for network internal reliability cannot 
be formulated since the input factors are all burdened with uncertainty. So, only the 
guidelines will be given instead, providing general orientation as regards the relation 
between the increase in the number of observations and the growth of the number of 
potential gross errors. The economical aspect will only be signalized.

3.1. Preliminaries

To simplify formulation of the guidelines and make them unambiguous we introduce 
the following notation:

kh – the number of gross errors corresponding to reliability level h
k1 –  the number of potential gross errors resulting from the Adamczewski modifi ed 

formula (5) 
n*, h* – the increased number of observations and the increased reliability level
~ , ~   – the symbols meaning here “slightly greater” and “slightly smaller”

In the analysis we shall use a global reliability index defi ned by 
n
u1h , where 

u is the number of model parameters, n is the number of observations in a network. 
We shall assume that the indices for individual observations are all equal, i.e. hhi , 
i = 1, 2,…, n.

The following properties of internal reliability criteria, related to the number of 
gross errors in a network, should be taken into account in formulating the guidelines: 

(1) numerical tests show that the lower-bound 5.0~h  ensures effective detection 
of a single gross error (k = 1), or even more gross errors (k = 2, 3) provided that 
they are of magnitudes not smaller than those computed from MDB and reside in 
the observations being in the 3rd or a higher degree of coexistence with each other 
(Prószyński and Kwaśniak 2002). Except for levelling networks the lower bound 5.0~h  
will be considered as a basic level of internal reliability in the design of networks;

(2) the numbers of observations corresponding to h = 0.75 (for k = 2), h = 0.83 
(for k = 3) and h = 0.88 (for k = 4) are excessively high, since these values of h were 
derived assuming the worst scenario as regards signs and location of gross errors 
(Prószyński 1997). Numerical tests indicate that in each of these cases we can detect 
one or two more gross errors, especially if they reside in the observations of distant 
mutual location as specifi ed above. 

(3) fi xing the values of the upper-bounds should be based on the law of gross 
errors (here – the modifi ed Adamczewski formula) and also on a cost analysis if 
suitable data are available.
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3.2. Preparation of tools for the analysis

Using the formula (5) with p = 0.0027, we shall construct a step-function (Fig. 
2a), showing a relationship between the number of potential gross errors k1 and the 
number of observations n.

The value of n separating the i-th and the (i + 1)-th region of k1, denoted by ni, max  
is taken such that P(Y = k1,i + 1), being a growing function of n, reaches a signifi cance 
level assumed as 0.05. The numbers of observations marking the steps are rounded 
off to the nearest tens. The original lengths of k1 – regions, i.e. before rounding-off, 
were not exact multiples of 110. 

With the lower-bound being 5.0~h , we shall form the intervals for model 
parameters u (where u = 0.5n), corresponding to successive regions of k1 in a step-
function (Fig. 2b). E  ach u-interval is characterized by kh = 1. 
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Fig. 2. a) potential number of gross errors as a function of the number of observations, 
b) corresponding intervals for model parameters, c) max. possible values of internal reliability 

(staying within k1,i – region, solid line; entering into k1,i+1 – region, dashed line)

Comparing the graphs a) and b) in Fig. 2 we can see that the difference between 
kh = 1 (corresponding to the lower-bound 5.0~h ) and k1,i where i = 1,2,3,4 (resulting 
from the applied law of gross errors) grows systematically. This weakens to a great 
extent a theory-supported positive role of observation redundancy in a network. 

For each u–interval there is a possibility to raise the reliability of a network over 
the lower-bound 5.0~h  by increasing the number of observations over 2u. 

The increased reliability ( ih )) corresponding to the increased number of 
observations ( in ) is obtained from the basic formula (see Sect. 3.1)
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the subscript “i” denotes the i-th u-interval;

We shall consider the following two cases for the value of in :

a) maxi,i nn  ; we do not enter into the region of higher value of k1. 

b) max1,iimaxi, nnn ; we enter into the region of higher value of k1.

On the basis of formula (7) we can express the maximum achievable reliability 
( maxi,h )  as a function of ui and maximum value of in  ( maxi,n ), i.e.

 
maxi,

i
maxi,

n
u1h  (8)

where maxi,maxi, nn  or max1,imaxi, nn   for the case a) and b) respectively. 

The graphs for maxi,h  in individual u-intervals are shown in Fig. 2c.

It is necessary to note that the reasoning analogous to that above could be applied for 
leveling networks, assuming the lower-bound 3.0~h .

 

3.3. Specifi cation of the guidelines

We shall consider the individual u-intervals:

I. u  55; kh = k1 = 1. 

Taking into account the inherent surplus of network reliability (see property 1), 
the increasing of the number of observations over 2u is not necessary, especially if it 
might considerably increase the cost of the survey. It is, however, possible to raise the 
reliability according to formula (7). Assuming n = 220, i.e. entering into the region 
of higher k1, yields 0.75h , which although brings us to an acceptable situation 
kh = k1 = 2, but at higher number of gross errors than the initial one.

II. 55  u  110; kh = 1, k1 = 2, and hence, kh < k1. 

The surplus of network reliability due to the property (1) may compensate for this 
difference. The difference can additionally be diminished by raising the number of 
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observations to 220, i.e. not entering into the region of k1 = 3, or to n = 330, but not 
reaching the reliability level necessary for the region k1 = 3. The former option, i.e. 
n = 220, seems to be satisfactory. 

III. 110 < u  165; kh = 1, k1 = 3, and hence, kh < k1.

The surplus of network reliability due to the property (1) may only slightly 
diminish this difference. To make the effect of the difference smaller we can raise the 
reliability by increasing the number of observations to 330, i.e. not entering into the 
region of k1 = 4. Increasing the number of observations to 440 may only worsen the 
situation. 

IV. 165 < u  220; kh = 1, k1 = 4, and hence, kh << k1.. 

The surplus of network robustness due to the property (1) may only slightly 
diminish this difference. It is possible to raise the reliability of the network not 
leaving the region k1 = 4, i.e. assuming n = 440. Further increase in the number of 
observations may only worsen the situation.

Since in the above analysis the lower-bound 5.0~h  which corresponds to 
n5.0~u , was treated as h = 0.5, the resulting boundary values of u should, for 

practical purposes, be slightly lowered, e.g. u = 0.48n. For n = 220, we would get 
slightly reduced number of parameters, i.e. u = 105.

4.  Conclusions 

The law of gross errors was not a main topic of the present research, but a basis for 
getting orientation as regards realistic upper limits for a number of observations in 
a network.

From the analysis based on the Adamczewski modifi ed formula it follows, that
– for networks with up to 50 parameters and not more than 100 observations, the 

increase in the number of observations without surpassing this limit raises the 
network internal reliability without increasing the number of potential gross 
errors;

– for networks with more than 100 parameters, by increasing the number of 
observations we cannot practically secure a proper level of internal reliability.
Hence, in the light of this law, we may conclude that the increasing of the number 

of observations is not as advantageous as one might expect when disregarding 
accumulation of gross errors with the increase in the number of observations. 

With a focus on engineering surveys it would be highly recommended to verify 
both the original and the modifi ed Adamczewski formula by carrying out the empirical 
tests and theoretical analyses for currently applied setting-out and monitoring networks 
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of different types and sizes. The formulas when adapted to modern measuring 
techniques may as well display slower rate of gross error accumulation and yield 
longer ranges of the n-intervals and u–intervals.

Acknowledgements

The author is greatly indebted to one of the reviewers for constructive comments and 
suggestions that substantially improved the manuscript. 

References

Adamczewski, Z. (2003). Prawo błędów grubych [The law of gross errors – in Polish], Przegląd 
Geodezyjmy (Geodetic Review), No. 4:3–5.

Baarda, W. (1968). A testing procedure for use in geodetic networks, Publications on Geodesy, New 
Series, vol.2, no.5, Netherlands Geodetic Commission, Delft.

Knight, N. L., Wang J. & Rizos C. (2010). Generalized measures of reliability for multiple outliers, 
J Geod., 84, 625–635.

Prószyński, W. (1997): Measuring the robustness potential of the least squares estimation: geodetic 
illustration, J Geod., 71, 65–659.

Prószyński, W. & Kwaśniak M. (2002). Niezawodność sieci geodezyjnych [Reliability of geodetic 
networks – inPolish], Publishing House of the Warsaw University of Technology, Warsaw. 
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Streszczenie

Z teorii niezawodności wynika, że im większy jest nadmiar obserwacyjny w sieci, tym wyższy poziom 
jej niezawodności wewnętrznej. Biorąc jednakże pod uwagę fi zykalną naturę procesu pomiaru można za-
uważyć, że projektowane dodatkowe obserwacje mogą zwiększyć liczbę potencjalnych błędów grubych 
w sieci, nie podnosząc niezawodności wewnętrznej do oczekiwanego według teorii poziomu. Niezbędne 
jest zatem ustalenie realistycznych poziomów górnych dla liczby obserwacji w sieci. W niniejszym arty-
kule podjęta jest próba sformułowania zasad ustalania takich poziomów. Jako punkt wyjściowy w ana-
lizie przyjęto uzyskaną na drodze empirycznej formułę (Adamczewski 2003), nazwaną prawem błędów 
grubych, pozwalającą wyznaczyć prawdopodobieństwo wystąpienia w sieci określonej liczby błędów 
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grubych. Przy użyciu pomocniczej zależności wyprowadzonej na podstawie gaussowskiego rozkładu 
błędów dokonano modyfi kacji formuły Adamczewskiego, przekształcając ją w jawną funkcję liczby 
obserwacji w sieci. Umożliwiło to skonstruowanie narzędzi niezbędnych do analizy, i ostatecznie sfor-
mułowanie wskazań co do wyznaczania górnych limitów niezawodności wewnętrznej sieci. Ponieważ 
formuła Adamczewskiego uzyskana została dla sieci klasycznych, wskazania niniejsze powinny być po-
traktowane jako wstępna propozycja wymagająca sprawdzenia w odniesieniu do nowoczesnych technik 
pomiarowych.


