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Abstract: The paper presents an empirical comparison of performance of three well 
known M – estimators (i.e. Huber, Tukey and Hampel’s M – estimators) and also some 
new ones. The new M – estimators were motivated by weighting functions applied in 
orthogonal polynomials theory, kernel density estimation as well as one derived from 
Wigner semicircle probability distribution. M – estimators were used to detect outlying 
observations in contaminated datasets. Calculations were performed using iteratively 
reweighted least-squares (IRLS). Since the residual variance (used in covariance matrices 
construction) is not a robust measure of scale the tests employed also robust measures i.e. 
interquartile range and normalized median absolute deviation. The methods were tested 
on a simple leveling network in a large number of variants showing bad and good sides 
of M – estimation. The new M – estimators have been equipped with theoretical tuning 
constants to obtain 95% effi ciency with respect to the standard normal distribution. The 
need for data – dependent tuning constants rather than those established theoretically is 
also pointed out.

Keywords: M – estimation, iteratively reweighted least squares, tuning constant, 
outliers, network adjustment

1. Introduction and motivation

Problem of handling outlying observations was already considered by D. Bernoulli 
in his works in 18th century (Stigler, 2010). Also, P. S. Laplace may be considered 
as a pioneer of what is now known as robust methods with his method of fi nding the 
values of q unknown quantities from n observational equations. His method consisted 
in imposing the conditions that the algebraic sum of the residuals should be zero, and 
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that their sum, all taken with the positive signs, should be a minimum. By introducing 
these conditions, he was able to solve over – determined systems of equations. This 
method he applied to the deduction of the shape of the earth from measurements of 
arcs of meridians, and also from pendulum observations (Dunnington, 1955). A. M. 
Legendre one of the “inventors” of least squares method was aware of its sensitivity 
to blunders and wrote: “If among these errors are some which appear too large to be 
admissible, then those observations which produced these errors will be rejected, as 
coming from too faulty experiments and the unknowns will be determined by means 
of the other observations, which will then give much smaller errors” (Rousseeuw and 
Leroy, 1987). For the fi rst time the term “robust” was used by G. Box in his paper 
(Box, 1953) but new great steps and new subdiscipline in statistics called robust 
estimation really emerged through works by J. W. Tukey (Tukey, 1960; 1962), P. J. 
Huber (Huber, 1964; 1967) and F. Hampel (Hampel, 1971; 1974). 

Robust methods in their present form may be divided into two groups i.e. passive 
and active. The fi rst group involves methods based on statistical tests such as iterative 
data snooping (Baarda, 1968) or τ – test (Pope, 1976; Prószyński and Kwaśniak, 2002). 
These methods are rigorous ones because of complete removal of an observation 
identifi ed as an outlier. The second group is represented by methods based on robust 
estimation. The main idea behind the methods is to gradually decrease the infl uence 
of outlying observations by reducing their weights. A special place among the latter 
is occupied by M-estimation introduced by P. J. Huber (1964), as a generalization of 
maximum-likelihood estimation. 

This work is devoted to the last mentioned group i.e. M – estimators. It compares 
performance of three well known M – estimators of Huber, Tukey and Hampel 
and some new M – estimators (as far as the authors knowledge goes) as well. The 
new estimators have been motivated by weighting function known from orthogonal 
polynomials theory (Jacobi orthogonal polynomials), kernel density estimation 
(Epanechnikov and tricube kernels) and also from probability distribution functions 
(Wigner’s semicircle probability distribution). One may easily notice some similarities 
among the mentioned functions and weighting function used in M – estimation. For 

instance, the function eexpcef  may be associated with standardized normal 

distribution, Gaussian kernel used in kernel density estimation (KDE), weighting 
function in Hermite orthogonal polynomials and also with Welsch M – estimator 
as well as with Danish weighting function without a neutral interval. Comparing 
Tukey’s weighting function one notices its similarity to biweight (quartic) kernel used 
in KDE. Cauchy’s M – estimator is derived from Cauchy’s probability distribution. 
These analogies justify the authors’ search for new M – estimators in these branches 
of mathematics.

Besides the comparison itself the paper shows some imperfections of M – estimation 
due to dependence of model residuals only. The procedure of comparison incorporates 
also robust measures of scale i.e. interquartile range and normalized median absolute 
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deviation; in the estimation process since the residual variance does not belong to 
the class of robust measures of scale. The new M – estimators have been endowed 
with theoretical tuning constants assuring 95% effi ciency with respect to the standard 
normal distribution. It is pointed out, however that the data – driven tuning constants 
(here chosen by trial and error) may limit the number of iterations in the iteratively 
reweighted least squares procedure while maintaining satisfactory results. 

2. M – estimation 

The idea behind the M – estimation (maximum likelihood type estimation) introduced 
by Huber in the sixties of 20th century, discussed and further developed by others 
relies on replacing objective (loss) function of the least squares method with a less 
rapidly increasing function (i.e. less increasing than a square). This “new” principle 
(new objective function ρ) may be expressed as:
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where:
li – the i th observation
ai

T – the i th row of the design matrix (Jacobi matrix – of fi rst derivatives)
x – vector of model parameters to be estimated 
ei – error corresponding with li (disturbance of the model)
n – number of observations

The new loss function satisfi es the following conditions:
– ρ(ei)  ≥  0, nonnegativity 
– ρ(0)  =  0, is zero when its argument is zero 
– ρ(ei)  =  ρ(-ei), is symmetric (even function),
– ρ(ei)  ≥  ρ(ej) for |ei|  >  |ej|, monotonicity in |ei|, 

There are two other functions on the basis of which M – estimators may be 
characterized (and also derived in a heuristic way). These are infl uence function 
and weighting function. Basing on infl uence function M – estimators are divided 
into three categories (Chen and Yin, 2002) i.e: monotone – infl uence function ψ is 
a monotone function (e.g. Huber), soft redescenders – infl uence function ψ decreases 
asymptotically to 0 with increasing |ei| (e.g. Cauchy), hard redescenders – infl uence 
function ψ is 0 for large |ei| (e.g. Tukey, 1962; Hampel, 1974). 
To make (1) minimum, it is required to solve the following equation:
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where ψ(e) is the fi rst derivative of the objective function with respect to residuals e, i.e. 

e
e   and is called the infl uence function (p – number of parameters to be estimated). 

The last function, particularly important and characteristic for M – estimators is the 
weighting function and is defi ned as: 

 
e
eew  (3)

That is, i-th observation with larger residual |ei| has smaller w(ei). Additionally, w(ei) 
should approach zero if |ei| is infi nitely large. Weighting function should satisfy the 
following conditions:
– w(e) is continuous, symmetric (even function)
– w(e) decreases when |e| increases
– equal to one when its argument is zero w(0)  =  1
– lime→∞  w(e)  =  0
Weighting functions with other properties are considered in Wiśniewski (2014). 
Rewriting expression (2) with the use of weighting function results in:
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In matrix notation (5) may be rewritten as:

 PLAxPAA TT   (6)

where the weighting matrix P consists of wi entries defi ned beforehand. 
Equation (6) leads to the well known solution of weighted least squares: 

 PLAPAAx TT 1ˆ  (7)

The optimization problem defi ned by (1) is usually carried out by means of 
iteratively reweighted least squares (IRLS). This method is usually chosen because of 
its mathematical simplicity and common understanding i.e. it is easy to implement in 
the standard least squares framework. The IRLS method relies on the use of adaptive 
weights suppressing the infl uence of observations with large values of residuals in 
subsequent iterations (for details consult e.g. Draper and Smith, 1998; Wiśniewski 
2009).

Since the residual variance is strongly affected by outlying observations, in this 
study, besides the latter mentioned the following scaling factors (variance factors) 
have been used (Wilcox, 2005; Duchnowski, 2011).
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Inter-quartile range

 0750 .. ˆˆˆIQR eee   (8)

where: subscripts 0.75 and 0.25 denote the third and fi rst quartiles; respectively

Normalized Median Absolute Deviation

 0.
ˆMADˆMADN ee  (9)

3. M – estimators used in this study

Besides the well known M – estimators i.e. Huber, Hampel and Tukey’s we introduce 
new redescending M – estimators (hard redescenders). Table 1 shows Huber, Tukey 
and Hampel’s weighting functions (both in descriptive and graphical form) and 
infl uence function (only graphical representation). The weighting functions for the 
new M – estimators were motivated by weighting functions applied in orthogonal 
polynomials theory, kernel density estimation as well as one derived from Wigner 
semicircle probability distribution. Table 2 presents the underlying functions that were 
the base for derivation of the new weighting functions. The new weighting functions 
adopted names from the underlying functions. 

Table 1. Weighting and infl uence function for Huber, Tukey and Hampel M – estimators

M – estimator (weighting function) Weighting Function Infl uence Function
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M – estimator (weighting function) Weighting Function Infl uence Function
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Table 2. The underlying functions and new derived weighting functions

Underlying function Derived weighting function

Wigner semicircle distribution
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(Epanechnikov, 1969)

Epanechnikov weighting function

c
scaled

c
scaledc

scaled

scaled

tefor

tefor
t

e
ew

i

i

i

i

ˆ0

ˆ
ˆ

1ˆ

Tricube kernel

1

33170
xxxK 1  

1{…} is the indicator function 
(Hastie et al., 2009)
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Jacobi (orthogonal) polynomials 
with respect to weighting function
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α = β – Ultraspherical polynomials
α, β = 0 – Legendre polynomials 
this coincides with least squares

(Davis, 1963)
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têfor
t

ê
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Underlying function Derived weighting function

As above

Jacobi2 weighting function

c
scaled

c
scaledc

scaled
c

scaled

scaled

tefor

tefor
t

e

t

e
ew

i

i

ii

i

ˆ0

ˆ
ˆ

1
ˆ

1ˆ

As above

Jacobi3 weighting function

c
scaled

c
scaledc

scaled
c

scaled

scaled

tefor

tefor
t

e

t

e
ew

i

i

ii

i

ˆ0

ˆ
ˆ

1
ˆ

1ˆ

3333

 

Table 3. Graphical representation of weighting and infl uence functions for the new M – estimators
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Table 2. 
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To save some space we do not present objective and infl uence functions for 
the new M – estimators. Infl uence functions may easily be derived from weighting 
functions by using formula (3). On the other hand, objective functions may be found 
by taking the antiderivatives of infl uence functions and shifting them by a constant to 
satisfy ρ(0)  =  0 when necessary. Shapes of weighting and infl uence functions for the 
new M – estimators as being more informative than formulas are presented in Table 3. 

All the estimators are endowed with theoretical tuning constants which give 95% 
effi ciency with respect to the standard normal distribution. The tuning constants were 
computed numerically from the following formula (Huber, 1981; Shevlyakov et al., 
2008):

 950.
dxxfx

dxxfx

eff c

c

c

c

t

t

t

t   (10)

where:
eff – stands for effi ciency
x ~ N(0, 1) 
f(x) – probability density of the standard normal distribution
ψ – infl uence function for any M – estimator 

Table 4. Tuning constants for the new M – estimators assuring 95% effi ciency with respect 
to the standard normal distribution

Semicircle Epanechnikov Tricube Jacobi Jacobi2 Jacobi3

tc = 3.137 tc = 3.674 tc = 4.417 tc = 4.687 tc = 3.618 tc = 3.492

For the M – estimators of Huber and Tukey tuning constants were adopted as 
1.345, 4.685 respectively and for the Hampel’s estimator three tuning constants were 
1.7, 3.4, 8.5 (Hogg, 1979). 

4. Numerical example

This simple numerical example is derived from Ghilani (2010) (original units: feet 
and miles are maintained). The original leveling network (Fig. 1 and Table 5) was 
sequentially contaminated with blunders. In the fi rst test every single observation 
(measured height difference) was burdened with a 1 foot gross error i.e. 7 different 
contaminated models were tested overall (7 contaminated models × 9 weighting 
functions × 3 scaling factors = 189 cases). In the second test two observations at 
a time were contaminated with a 1 foot gross error (in a sequence 1–3, 1–5, 1–7, 2–4, 
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2–6, 3–5, 3–7, 4–6, 5–7) resulting in 9×9×3=243 cases in total. The overall number 
of tests (432) provides an informative insight how the methods work under different 
scenarios.

In this place, it is worth recalling two quantities that appear to be quite informative 
in blunder detection. The fi rst one is the redundancy number (global and local) whilst 
the other is a correlation matrix for residuals. The global redundancy number is equal 
to R = n – p i.e. the number of extra observations in the model. The local redundancy 
numbers are the diagonal elements of the matrix (difference between the unit matrix 
I and the “hat” matrix H):

 PAPAAAIHIR TT 1
 (11)

thus, individual local redundancies read:

 iii hr 1   (12)

In an uncorrelated case these values sum up to the global redundancy number 
and are all in the interval 0 ≤ ri ≤ 1. Individual values of local redundancy inform 
about detectability of blunders on individual observations and are fi rmly related to 
the reliability of geodetic networks. Large local redundancy number ri (close to unity) 
means that a blunder greatly affects the residual and is easy to detect, on the other 
hand small value (approaching zero) of this local measure means that an outlier has 
small impact on the residual and will be hard to detect (Ghilani, 2010). The second 
quantity, the residual correlation matrix gives an answer as to which two residuals 
are signifi cantly correlated and what is going further if a blunder occurs on one 
observation from the pair the other residual will be infl uenced by this blunder as well. 
Large values of correlation coeffi cients for the residuals may indicate which residuals 
are subject to masking (a bad observation becomes a good one) or swamping (a 
good observation becomes a bad one) effect. The correlation matrix may be easily 
derived from covariance matrix for the residuals Cêê according to the following 
formula: 

 Corr(ê) = DCêê D (13)

where D is a diagonal matrix containing the inverses of square roots of diagonal 
elements of Cêê matrix (standard deviations for individual residuals). Hence, correlation 
coeffi cient between i – th and j – th residuals expressed by means of diagonal and off 
– diagonal entries of the covariance matrix reads: 
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The latter coeffi cient will particularly be helpful in explaining why all 
M – estimators considered in this study fail to detect outliers in some instances of this 
example. For more information on undetectability of gross errors we refer the reader 
to (Kwaśniak 2012; Prószyński 1997, 2010).

Tests were mainly performed with previously derived “theoretical” tuning constants 
but some cases were also checked with arbitrary ones (trial and error method) but main 
emphasis is put on the fi rst mentioned. Table 6 presents simplifi ed results (without 
error analysis) of the adjustment of the test leveling network without blunders, thus 
it constitutes the reference for further analysis. Table 7 reveals mutual correlations 
between residuals as well as redundancy numbers, the quantities which will be useful 
in explaining results of the adjustment. Table 8 introduces list of residuals obtained 
from least squares adjustment of the leveling net for “one – blunder” contaminated 
sets i.e. 7 sets of residuals. Table 9 presents maximum and average differences 
between adjusted heights (model parameters) from “clean” (without blunders) least 
squares adjustment and “contaminated” least squares adjustment for “one – blunder” 
contaminated sets. These two measures i.e. maximum and average difference will 
be repeatedly reported (in fi gures) in the part of this numerical example devoted to 
results of M – estimation. Tables 10 and 11 present the same quantities as revealed 
in Tables 8 and 9 but for the case of “two – blunders” contamination. From tables 10 
and 7 it is immediately visible how the correlation between residuals might infl uence 
other residuals (innocent ones), this is marked with bold – face font. This is clearly 
visible for pairs 3-5 and 3-7 where M – estimation failed to detect blunders. For 
the contaminated pairs 3-5 and 3-7 innocent observation no. 4 obtained the highest 
values of residuals and as the M-estimators are based on individual residuals only and 
do not take into account interrelations between them. It is the main reason of their 
usual failure in these cases, but as shown in Figures 8, 9 (case of Tricube weighting 
function), Figures 10, 11 (Jacobi3 weighting function, to some extent) and Figures 
12, 13 (cases of Semicircle, Epanechnikov, Tricube and Jacobi2 weighting functions) 
even then by some coincidence it may give proper results.

Fig. 1. Tested leveling net Table 5. Observed elevation differences 
and weights used in adjustment

Line Elevation 
difference [ft]

Length 
[miles]

Relative 
weights

1 5.10 4 3

2 2.34 3 4

3 −1.25 2 6

4 −6.13 3 4

5 −0.68 2 6

6 −3.00 2 6

7 1.70 2 6
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Table 6. Simplifi ed results of the adjustment of the leveling network 
(only adjusted heights and residuals)

Adjusted Elevations

A B C

105.1504 104.4892 106.1972

Residuals

1 2 3 4 5 6 7

-0.0504 -0.0096 0.0528 0.0672 -0.0188 0.0108 -0.0080

Table 7. Correlation matrix for the residuals and the local redundancy numbers 
(correlation coeffi cients around or greater than the value of 0.4 are marked with a bold – face font)

Obs. 1 2 3 4 5 6 7 Redundancy number

1 1.000 0.481 -0.089 0.065 0.454 -0.242 0.167 0.720

2 0.481 1.000 0.110 -0.080 -0.562 0.300 -0.206 0.627

3 -0.089 0.110 1.000 0.571 -0.196 -0.316 -0.535 0.560

4 0.065 -0.080 0.571 1.000 0.143 0.230 0.389 0.707

5 0.454 -0.562 -0.196 0.143 1.000 -0.534 0.367 0.404

6 -0.242 0.300 -0.316 0.230 -0.534 1.000 0.591 0.538

7 0.167 -0.206 -0.535 0.389 0.367 0.591 1.000 0.444

Table 8. Residuals obtained from least squares adjustment for “one – blunder” contaminated sets

Obs. 1 2 3 4 5 6 7

1 0.670 0.323 -0.130 0.003 0.296 -0.264 0.083

2 0.270 0.617 0.070 -0.063 -0.356 0.204 -0.143

3 0.013 0.106 0.613 0.346 -0.040 -0.120 -0.214

4 0.107 0.014 0.507 0.774 0.160 0.240 0.334

5 0.154 -0.250 -0.112 0.043 0.386 -0.268 0.137

6 -0.096 0.153 -0.162 0.126 -0.238 0.548 0.300

7 0.059 -0.097 -0.275 0.170 0.148 0.281 0.436

Values presented in Tables 7 and 8 are worth comparing, it is immediately visible 
how the correlation between residuals infl uences residuals themselves. For example 
taking the residual on the fi rst observation one notices its strong correlation with 
other two i.e. numbered 2 and 5 (bold face font in Table 7). Confronting this with the 
values from Table 8 one observes a kind of residual fl ow between correlated ones i.e. 
in general; stronger correlated ones obtain larger values of residuals. One may also 
notice that the effect of a blunder on the corresponding residual is proportional to 
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the redundancy number i.e. compare redundancy numbers from Table 7 and diagonal 
entries in Table 8. An explanation of this proportionality is described in e.g. Ghilani 
(2010). 

Table 9. Maximum and average differences between adjusted heights (model parameters) 
from “clean” least squares adjustment and “contaminated” least squares adjustment 

for “one – blunder” contamination

1 2 3 4 5 6 7

Max. diff. 0.2800 0.3733 0.4400 0.2933 0.3467 0.4622 0.2889

Ave. diff. 0.1422 0.1896 0.2311 0.1541 0.2296 0.2830 0.2296

Table 10 Residuals obtained from least squares adjustment for “two – blunders” contaminated sets

Obs. 1-3 1-5 1-7 2-4 2-6 3-5 3-7 4-6 5-7

1 0.5896 1.0163 0.8029 0.3763 0.1096 0.2163 0.0029 -0.2104 0.4296

2 0.3504 -0.0763 0.1371 0.5637 0.8304 -0.2763 -0.0629 0.1504 -0.4896

3 0.5728 -0.0805 -0.2539 0.3995 -0.0672 0.5195 0.3461 0.1728 -0.3072

4 0.5472 0.2005 0.3739 0.7205 0.1872 0.6005 0.7739 0.9472 0.4272

5 0.0612 0.5590 0.3101 -0.1877 -0.4988 0.2923 0.0434 -0.2055 0.5412

6 -0.2692 -0.3448 0.1930 0.2686 0.6908 -0.4114 0.1264 0.6641 0.0508

7 -0.2080 0.2142 0.5031 0.0809 0.1920 -0.1191 0.1698 0.4587 0.5920

Table 11. Maximum and average differences between adjusted heights (model parameters) 
from “clean” least squares adjustment and “contaminated” least squares adjustment 

for “two – blunders” contamination

1-3 1-5 1-7 2-4 2-6 3-5 3-7 4-6 5-7

Max. diff. 0.4800 0.3556 0.3067 0.4267 0.3200 0.5333 0.7067 0.3467 0.4800

Ave. diff. 0.3733 0.1852 0.2119 0.3437 0.2000 0.4074 0.2919 0.2089 0.2933

The results of M – estimation will be listed for two cases (one outlier and two 
outliers) in the same scheme. Within each variant of a scaling factor i.e. residual 
variance, interquartile range and normalized MAD; the maximum difference and the 
average difference between the “clear” solution and the one “contaminated” obtained 
with M – estimation will be reported. The comment will be provided when necessary. 
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Case I – one outlier

Scaling factor: residual variance

0,00

0,06

Fig. 2. Maximum absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets

0,00

0,06

Fig. 3. Average absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets

Scaling factor: interquartile range

0,00

0,06

Fig. 4. Maximum absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets
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0,00

0,01

0,03

Fig. 5. Average absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets

Scaling factor: normalized MAD

0,00
0,10

0,30

0,50

Fig. 6. Maximum absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets

0,00

0,05

0,10

0,15

Fig. 7. Average absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets

Despite the fact that the residual variance is considered as an improper scale factor 
(it lacks robustness) it gave satisfactory results in this case. On the other hand in case 
of the normalized MAD Semicircle, Epanechnikov, Jacobi2 and Jacobi3 weighting 
functions gave unsatisfactory results as far as maximum and average difference 
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in model parameters (estimated heights) are concerned (residuals carry a trace of 
blunders detectability). The explanation of the above may be that the tuning constants 
were set up with respect to the standard normal distribution. And in case of different 
than residual variance scaling factor the scaled residuals may take values much higher 
than triple standard deviation and bounds determined by the tuning constants may be 
slightly overshot. This indicates that the choice of a tuning constant must be dependent 
on the adopted scaling factor in some reasonable way (this will be the subject of the 
authors’ further researches). Additional tests (not presented in the content of the paper) 
carried out on arbitrary tuning constants selected by “trial and error method” proved 
that the number of iterations of each M – estimator may be reduced (in theory, for 
the cost of loss in effi ciency with respect of a normal distribution) whilst maintaining 
satisfactory results. When comparing the maximum and average differences from 
Figures 2, 3 and 4, 5 and 6, 7 respectively one may notice their slight decrease (on 
average) in favour of M – estimators with the interquartile range as a scaling factor. 

Case II – two outliers

Scaling factor: residual variance
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Fig. 8. Maximum absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets
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Fig. 9. Average absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets
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Scaling factor: interquartile range
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Fig. 10. Maximum absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets
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Fig. 11. Average absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets

Scaling factor: normalized MAD
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Fig. 12. Maximum absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets
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Fig. 13. Average absolute differences between the „clean” least squares solutions and M 
– estimations for contaminated datasets

In case of residual variance scaling factor almost all estimators worked equally 
well. The exception is the Hampel’s one that with adopted tuning constant immediately 
satisfi ed stopping criteria and fail to detect blunders. In all cases contaminated pair 
3  –  7 was undetectable from the reasons described at the beginning of the numerical 
example section. For the pair 3  –  5 theoretically undetectable blunder was detected by 
one of the applied M – estimators (i.e. Tricube). For the case of interquartile range 
scaling factor two M – estimators had problems with proper detections i.e. the ones of 
Huber and Hampel. They gave unsatisfactory results as far as maximum and average 
differences in model parameters (estimated heights) are concerned but when one 
analyzes residuals blunders are quite visibly detected. The normalized MAD scaling 
factor may be considered as the best performing this time. It overcame almost all the 
problems of the above mentioned scaling factors. Additionally, a problematic pair 
3  –  5 got four right solutions. The pair 3  –  7 remains unsolved in this case as well. As 
a summary, Table 12 presents the overall percentage of right blunder detections from 
all variants. 

Table 12. The overall percentage of right blunder detections in all variants by the M – estimators used 
in this study

Huber Tukey Hampel Semicircle Epanechnikov Tricube Jacobi Jacobi2 Jacobi3

87.5% 87.5% 72.9% 81.3% 85.4% 91.7% 87.5% 85.4% 83.3%

Conclusions

Six new M – estimators (as far as the authors’ knowledge is concerned) have been 
introduced in the paper and compared to the three well known with grounded position 
i.e. of Huber, Tukey and Hampel. If one expects the authors will select the one out of 
the nine tested as the best performing the authors will disappoint these expectations. 
Although the percentage of detectability of gross errors by each method is possible 
to obtain on the basis of presented example (simulated one with the knowledge what 
the result should be, and in reality no such knowledge is usually available); it is 
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only illusory because the performance of M – estimators is highly dependent on 
the dataset. As stated in the introduction this comparison, besides introducing new 
M – estimators aimed at showing imperfections of M – estimation due to dependence 
on model residuals only. Of course, in a large number of cases M – estimators are 
highly superior to the standard least squares technique. On the other hand a large 
number of M – estimators is dependent on the so-called tuning constant which 
inappropriately selected may also contribute to the failure of the entire procedure. 
Tuning constants may be selected either on theoretical grounds (e.g. to obtain a certain 
level of effi ciency with respect to the standard normal distribution), data – driven (this 
approach is constantly being developed e.g. (Wang et al., 2007)) or just empirically by 
“trial and error” method. This form of arbitrariness is a drawback of M – estimation. 
In fact arbitrary choice of the tuning constant is able to limit the number of iterations 
in the reweighted least squares method. Also, since M – estimation is based on 
individual residuals only it is very vulnerable to masking and swamping effect, i.e. 
misidentifi cation of observations – “innocent” as blunders and vice versa. The authors’ 
future research will be focused on fi nding suitable data – driven tuning constants that 
involve the shape of weighting function, structure of data (scaling factor, sample size 
etc.) as well as on the use of additional information hidden in e.g. correlation matrix 
for residuals and redundancy numbers and probably other measures (geometry of the 
problem will be taken into account) which are very informative as to the issue of 
which observations are potentially the most endangered with misidentifi cation effects. 
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Streszczenie

W artykule przedstawiono empiryczne porównanie trzech dobrze znanych M – estymatorów (Huber’a, 
Tukey’a oraz Hampel’a) jak również kilku nowych. Nowe estymatory motywowane były funkcjami wa-
gowymi wykorzystywanymi w teorii wielomianów ortogonalnych, estymacji jądrowej oraz jeden moty-
wowany przez funkcję gęstości „półokręgu” Wigner’a. Każdy z estymatorów został użyty do wykrywa-
nia obserwacji odstających w skażonych zbiorach danych. Obliczenia wykonano za pomocą „reważonej” 
metody najmniejszych kwadratów. Ze względu na fakt, iż wariancja resztowa (używana w konstrukcji 
macierzy kowariancyjnych) nie jest odpornym estymatorem skali, w testach wykorzystano również od-
porne miary takie jak: rozstęp ćwiartkowy oraz znormalizowane odchylenie medianowe. Testy wykona-
no na prostej sieci niwelacyjnej w dużej ilości wariantów ukazujących dobre i złe strony M – estymacji. 
Nowe estymatory zostały wyposażone w teoretyczne stałe odcinania zapewniające 95% efektywność 
względem standaryzowanego rozkładu normalnego. Kwestia rozwijania metod bazujących na stałych 
odcinania pochodzących z danych została również pokrótce poruszona. 


