Nauki Techniczne

Bulletin of the Polish Academy of Sciences Technical Sciences

Zawartość

Bulletin of the Polish Academy of Sciences Technical Sciences | 2021 | 69 | 6

Pobierz PDF Pobierz RIS Pobierz Bibtex

Bibliografia

  1.  J. Kiciński, “Rotor dynamics ― still open questions,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e139791, 2021, doi: 10.24425/ bpasts.2021.139791.
  2.  S. Nitzschke, Ch. Ziese, and E. Woschke, “Analysis of dynamical behaviour of full-floating disk thrust bearings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e139001, 2021, doi: 10.24425/bpasts.2021.139001.
  3.  J. Zapoměl and P. Ferfecki, “Vibration control of rotors mounted in hydrodynamic bearings lubricated with magnetically sensitive oil by changing their load capacity,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e137988, 2021, doi: 10.24425/bpasts.2021.137988.
  4.  P. Kurnyta-Mazurek, T. Szolc, M. Henzel, and K. Falkowski, “Control system with a non-parametric predictive algorithm for a high- speed rotating machine with magnetic bearings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e137988, 2021, doi: 10.24425/ bpasts.2021.138998.
  5.  J. Jungblut, Ch. Fischer, and S. Rinderknecht, “Active vibration control of a gyroscopic rotor using experimental modal analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e138090, 2021, doi: 10.24425/bpasts.2021.138090.
  6.  T. Drapatow, O. Alber, and E. Woschke, “Consideration of fluid inertia and cavitation for transient simulations of squeeze film damped rotor systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e139201, 2021, doi: 10.24425/bpasts.2021.139201.
  7.  B. Schüßler, T. Hopf, and S. Rinderknecht, “Simulative investigation of rubber damper elements for planetary touch-down bearings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e139615, 2021, doi: 10.24425/bpasts.2021.139615.
  8.  G. Quinz, M. Prem, M. Klanner, and K. Ellermann, “Balancing of a linear elastic rotor-bearing system with arbitrarily distributed un- balance using the Numerical Assembly Technique,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e138237, 2021, doi: 10.24425/ bpasts.2021.138237.
  9.  M. Klanner, M. Prem, and K. Ellermann, “Quasi-analytical solutions for the whirling motion of multi-stepped rotors with arbitrarily distributed mass unbalance running in anisotropic linear bearings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e138999, 2021, doi: 10.24425/bpasts.2021.138999.
  10.  S. Bastakoti et. al., “Model-based residual unbalance identification for rotating machines,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e139790, 2021, doi: 10.24425/bpasts.2021.139790.
  11.  T. Szolc and R. Konowrocki, “Research on stability and sensitivity of the rotating machines with overhung rotors to lateral vibrations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e137987, 2021, doi: 10.24425/bpasts.2021.137987.
  12.  Ch. Prasad, P. Snabl, and L. Pešek, “A meshless method for subsonic stall flutter analysis of turbomachinery 3D blade cascade,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e139000, 2021, doi: 10.24425/bpasts.2021.139000.
  13.  F. Gaulard, J. Schmied, and A. Fuchs, “State-of-the-art rotordynamic analyses of pumps”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e139316, 2021, doi: 10.24425/bpasts.2021.139316.
Przejdź do artykułu

Autorzy i Afiliacje

Horst Ecker
1
Rainer Nordmann
2
Tadeusz Burczyński
3
ORCID: ORCID
Tomasz Szolc
3
ORCID: ORCID

  1. Vienna University of Technology, Institute of Mechanics and Mechatronics, Getrieidemarkt 9, 1060 Vienna Austria
  2. Technical University of Darmstadt, Institute for Mechatronic Systems, Otto-Berndt Strasse 2, 64287 Darmstadt, Germany
  3. Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Despite many years of development in the field of rotor dynamics, many issues still need to be resolved. This is due to the fact that turbomachines, even those with low output power, have a very complex design. The author of this article would like to signal these issues in the form of several questions, to which there are no precise answers. The questions are as follows: How can we build a coherent dynamic model of a turbomachine whose some subsystems have non-linear characteristics? How can we consider the so-called prehistory in our analysis, namely, the relation between future dynamic states and previous ones? Is heuristic modelling the future of rotor dynamics? What phenomena may occur when the stability limit of the system is exceeded? The attempt to find answers to these questions constitutes the subject of this article. There are obviously more similar questions, which encourage researchers from all over the world to further their research.
Przejdź do artykułu

Bibliografia

  1.  M.C. Shaw and T.J. Nussdorfer, “An analysis of the full-floating journal bearing,” NACA, Tech. Rep. RM-E7A28a, 1947.
  2.  C. Kettleborough, “Frictional experiments on lightly-loaded fully floating journal bearings,” Aust. J. Appl. Sci., vol. 5, pp. 211–220, 1954.
  3.  J. Dworski, “High-speed rotor suspension formed by fully floating hydrodynamic radial and thrust bearings,” J. Eng. Gas Turbines Power, vol. 86, no. 2, pp. 149–160, 1964.
  4.  M. Harada and J. Tsukazaki, “The steady-state characteristics of a hydrostatic thrust bearing with a floating disk,” J. Tribol., vol. 111, no. 2, pp. 352–357, Apr 1989, doi: 10.1115/1.3261921.
  5.  M. Fischer, A. Mueller, B. Rembold, and B. Ammann, “Numerical investigation of the flow in a hydrodynamic thrust bearing with floating disk,” J. Eng. Gas Turbines Power, vol. 135, 2013, doi: 10.1115/1.4007775.
  6.  S. Dousti and P. Allaire, “A thermohydrodynamic approach for single-film and double-film floating disk fixed thrust bearings verified with experiment,” Tribol. Int., vol. 140, p. 105858, Dec 2019.
  7.  H. Engel, “Berechung der Strömung, der Drücke und Temperaturen in Radial-Axialbund-Gleitlagern mit Hilfe eines Finite-Elemente-Programms,” Ph.D. thesis, Universität Stuttgart, 1992.
  8.  T. Hagemann, H. Blumenthal, C. Kraft, and H. Schwarze, “A study on energetic and hydraulic interaction of combined journal and thrust bearings,” in Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, no. GT2015‒43460, 2015, pp. 1–11.
  9.  G.H. Jang, S.H. Lee, and H.W. Kim, “Finite element analysis of the coupled journal and thrust bearing in a computer hard disk drive,” Tribol., vol. 128, pp. 335–340, 2006, doi: 10.1115/1.2162918.
  10.  G. Xiang, Y. Han, R. Chen, J. Wang, X. Ni, and K. Xiao, “A hydrodynamic lubrication model and comparative analysis for coupled microgroove journal-thrust bearings lubricated with water,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., vol. 234, no. 11, pp. 1755–1770, Nov 2019.
  11.  J.-C. Luneno, “Coupled vibrations in horizontal and vertical rotor-bearings systems,” Ph.D. thesis, Luleå University of Technology, 2010.
  12.  C. Ziese, C. Daniel, E. Woschke, and H. Mostertz, “Hochlaufsimulation eines semi-floating gelagerten ATL-Rotors mit schwimmender Axiallagerscheibe,” in 14. Magdeburger Maschinenbautage (24.–25.09.2019), Sep. 2019, pp. 105–112.
  13.  H.G. Elrod, “A cavitation algorithm,” J. Tribol., vol. 103, no. 3, pp. 350–354, 1981.
  14.  S. Nitzschke, E. Woschke, D. Schmicker, and J. Strackeljan, “Regularised cavitation algorithm for use in transient rotordynamic analysis,” Int. J. Mech. Sci., vol. 113, pp. 175–183, 2016.
  15.  S. Nitzschke, “Instationäres Verhalten schwimmbuchsengelagerter Rotoren unter Berücksichtigung masseerhaltender Kavitation,” Ph.D. thesis, Otto-von-Guericke Universität Magdeburg, 2016.
  16.  C. Daniel, “Simulation von gleit-und wälzgelagerten Systemen auf Basis eines Mehrkörpersystems für rotordynamische Anwendungen,” Ph.D. thesis, Otto-von-Guericke Universität Magdeburg, 2013.
  17.  C. Ziese, E. Woschke, and S. Nitzschke, “Tragdruck- und Schmierstoffverteilung von Axialgleitlagern unter Berücksichtigung von mas- seerhaltender Kavitation und Zentrifugalkraft,” in 13. Magdeburger Maschinenbautage, 2017, pp. 312–323.
  18.  A. Kumar and J.F. Booker, “A finite element cavitation algorithm,” J. Tribol., vol. 113, no. 2, pp. 279–284, 1991.
  19.  “MAN turbochargers TCA series floating disk thrust bearing,” https://turbocharger.man-es.com/docs/default-source/ shopwaredocuments/ tca-turbochargerf451d068cde04720bdc9b 8e95b7c0f8e.pdf, accessed: 2020‒10‒09.
  20.  “KBB turbochargers ST27 series f loating disk thrust bearing,” https://kbb-turbo.com/turbocharger-product-series/st27-series, accessed: 2020-10-09.
  21.  C. Irmscher, S. Nitzschke, and E. Woschke, “Transient thermohydrodynamic analysis of a laval rotor supported by journal bearings with respect to calculation times,” in SIRM 2019 – 13th International Conference on Dynamics of Rotating Machines, 2019, pp. Paper–ID SIRM2019–25.
Przejdź do artykułu

Autorzy i Afiliacje

Jan Kiciński
1

  1. Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, Gdańsk 80-231, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Full-floating ring bearings are state of the art at high speed turbomachinery shafts like in turbochargers. Their main feature is an additional ring between shaft and housing leading to two fluid films in serial arrangement. Analogously, a thrust bearing with an additional separating disk between journal collar and housing can be designed. The disk is allowed to rotate freely only driven by drag torques, while it is radially supported by a short bearing against the journal. This paper addresses this kind of thrust bearing and its implementation into a transient rotor dynamic simulation by solving the Reynolds PDE online during time integration. Special attention is given to the coupling between the different fluid films of this bearing type. Finally, the differences between a coupled and an uncoupled solution are discussed.
Przejdź do artykułu

Bibliografia

  1. M.C. Shaw and T.J. Nussdorfer, “An analysis of the full-floating journal bearing,” NACA, Tech. Rep. RM-E7A28a, 1947.
  2. C. Kettleborough, “Frictional experiments on lightly-loaded fully floating journal bearings,” Aust. J. Appl. Sci., vol. 5, pp. 211–220, 1954.
  3. J. Dworski, “High-speed rotor suspension formed by fully floating hydrodynamic radial and thrust bearings,” J. Eng. Gas Turbines Power, vol. 86, no. 2, pp. 149–160, 1964.
  4. M. Harada and J. Tsukazaki, “The steady-state characteristics of a hydrostatic thrust bearing with a floating disk,” J. Tribol., vol. 111, no. 2, pp. 352–357, Apr 1989, doi: 10.1115/1.3261921.
  5. M. Fischer, A. Mueller, B. Rembold, and B. Ammann, “Numerical investigation of the flow in a hydrodynamic thrust bearing with floating disk,” J. Eng. Gas Turbines Power, vol. 135, 2013, doi: 10.1115/1.4007775.
  6. S. Dousti and P. Allaire, “A thermohydrodynamic approach for single-film and double-film floating disk fixed thrust bearings verified with experiment,” Tribol. Int., vol. 140, p. 105858, Dec 2019.
  7. H. Engel, “Berechung der Strömung, der Drücke und Temperaturen in Radial-Axialbund-Gleitlagern mit Hilfe eines Finite-Elemente-Programms,” Ph.D. thesis, Universität Stuttgart, 1992.
  8. T. Hagemann, H. Blumenthal, C. Kraft, and H. Schwarze, “A study on energetic and hydraulic interaction of combined journal and thrust bearings,” in Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, no. GT2015‒43460, 2015, pp. 1–11.
  9. G.H. Jang, S.H. Lee, and H.W. Kim, “Finite ele- ment analysis of the coupled journal and thrust bearing in a computer hard disk drive,” J. Tribol., vol. 128, pp. 335–340, 2006, doi: 10.1115/1.2162918.
  10. G. Xiang, Y. Han, R. Chen, J. Wang, X. Ni, and K. Xiao, “A hydrodynamic lubrication model and comparative analysis for coupled microgroove journal-thrust bearings lubricated with water,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., vol. 234, no. 11, pp. 1755–1770, Nov 2019.
  11. J.-C. Luneno, “Coupled vibrations in horizontal and vertical rotor-bearings systems,” Ph.D. thesis, Luleå University of Technology, 2010.
  12. C. Ziese, C. Daniel, E. Woschke, and H. Mostertz, “Hochlaufsimulation eines semi-floating gelagerten ATL-Rotors mit schwimmender Axiallagerscheibe,” in 14. Magdeburger Maschinen- bautage (24.–25.09.2019), Sep. 2019, pp. 105–112.
  13. H.G. Elrod, “A cavitation algorithm,” J. Tribol., vol. 103, no. 3, pp. 350–354, 1981.
  14. S. Nitzschke, E. Woschke, D. Schmicker, and J. Strackeljan, “Regularised cavitation algorithm for use in transient rotordynamic analysis,” Int. J. Mech. Sci., vol. 113, pp. 175–183, 2016.
  15. S. Nitzschke, “Instationäres Verhalten schwimmbuchsengelagerter Rotoren unter Berücksichtigung masseerhaltender Kavitation,” Ph.D. thesis, Otto-von-Guericke Universität Magdeburg, 2016.
  16. C. Daniel, “Simulation von gleit-und wälzgelagerten Systemen auf Basis eines Mehrkörpersystems für rotordynamische Anwendungen,” Ph.D. thesis, Otto-von-Guericke Universität Magdeburg, 2013.
  17. C. Ziese, E. Woschke, and S. Nitzschke, “Tragdruckund Schmierstoffverteilung von Axialgleitlagern unter Berücksichtigung von masseerhaltender Kavitation und Zentrifugalkraft,” in Magdeburger Maschinenbautage, 2017, pp. 312–323.
  18. A. Kumar and J.F. Booker, “A finite element cavitation algorithm,” J. Tribol., vol. 113, no. 2, pp. 279–284, 1991.
  19. “MAN turbochargers TCA series floating disk thrust bearing,” https://turbocharger.man-es.com/docs/default-source/ shopwaredocuments/tca-turbochargerf451d068cde04720bdc9b 8e95b7c0f8e.pdf, accessed: 2020‒10‒09.
  20. “KBB turbochargers ST27 series f loating disk thrust bearing,” https://kbb-turbo.com/turbocharger-product-series/ st27-series, accessed: 2020-10-09.
  21. C. Irmscher, S. Nitzschke, and E. Woschke, “Transient thermohydrodynamic analysis of a laval rotor supported by journal bearings with respect to calculation times,” in SIRM 2019 – 13th International Conference on Dynamics of Rotating Machines, 2019, pp. Paper–ID SIRM2019–25.
Przejdź do artykułu

Autorzy i Afiliacje

Steffen Nitzschke
1
Christian Ziese
1
Elmar Woschke
1
ORCID: ORCID

  1. Institute of Mechanics, Otto-von-Guericke University, 39106 Magdeburg, Germany
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Rotors of rotating machines are often mounted in hydrodynamic bearings. Loading alternating between the idling and full load magnitudes leads to the rotor journal eccentricity variation in the bearing gap. To avoid taking undesirable operating regimes, its magnitude must be kept in a certain interval. This is offered by the hydrodynamic bearings lubricated with smart oils, the viscosity of which can be changed by the action of a magnetic field. A new design of a hydrodynamic bearing lubricated with magnetically sensitive composite fluid is presented in this paper. Generated in the electric coil, the magnetic flux passes through the bearing housing and the lubricant layer and then returns to the coil core. The action of the magnetic field on the lubricant affects the apparent fluid viscosity and thus the position of the rotor journal in the bearing gap. The developed mathematical model of the bearing is based on applying the Reynolds equation adapted for the case of lubricants exhibiting the yielding shear stress. The results of the performed simulations confirmed that the change of magnetic induction makes it possible to change the bearing load capacity and thus to keep the rotor journal eccentricity in the required range. The extent of control has its limitations. A high increase in the loading capacity can arrive at the rotor forced vibration’s loss of stability and induce large amplitude oscillation.
Przejdź do artykułu

Bibliografia

  1. W.-X. Wu and F. Pfeiffer, “Active vibration damping for rotors by a controllable oil-film bearing,” in Proc. of the Fifth International Conference on Rotor Dynamics, 1998, pp. 431‒442.
  2. J.M. Krodkiewski and L.D. Sun, “Modelling of multi-bearing rotor systems incorporating an active journal bearing,” J. Sound Vib., vol. 210, no. 3, pp. 215‒229, 1998.
  3. P.M. Przybylowicz, “Stability of journal bearing system with piezoelectric elements,” Mach. Dyn. Probl., vol. 24, no. 1, pp. 155‒171, 2000.
  4. T. Szolc, K. Falkowski, M. Henzel, and P. Kurnyta-Mazurek, “Determination of parameters for a design of the stable electro-dynamic passive magnetic support of a high-speed flexible rotor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 91‒105, 2019.
  5. H. Urreta, Z. Leicht, A. Sanchez, A. Agirre, P. Kuzhir, and G. Magnac, “Hydrodynamic Bearing Lubricated with Magnetic Fluids,” J. Intell. Mater. Syst. Struct., vol. 21, 2010.
  6. X. Wang, H. Li, M. Li, H. Bai, G. Meng, and H. Zhang, “Dynamic characteristics of magnetorheological fluid lubricated journal bearing and its application to rotor vibration control,” J. Vibroeng., vol. 17, pp. 1912‒1927, 2015.
  7. J. Zapoměl and P. Ferfecki, “The influence of ferromagnetic fluids on performance of hydrodynamic bearings,” Vibroeng. Procedia, vol. 27, pp. 133‒138, 2019.
  8. J. Zapoměl and P. Ferfecki, “Study of the load capacity and vibration stability of rotors supported by hydrodynamic bearings lubricated by magnetically sensitive oil,” in Proc. of the 14th International Conference on Dynamics of Rotating Machines, 2021, pp. 1‒9.
  9. D. Susan-Resiga and L. Vékás, “From high magnetization ferrofluids to nano-micro composite magnetorheological fluid: properties and applications,” Rom. Rep. Phys., vol. 70, pp. 1‒29, 2018.
  10. N. Ida. Engineering Electromagnetics. Heidelberg: Springer, 2015.
  11. P. Ferfecki, J. Zapoměl, and J. Kozánek, “Analysis of the vibration attenuation of rotors supported by magnetorheological squeeze film dampers as a multiphysical finite element problem,” Adv. Eng. Software, vol. 104, pp. 1‒11, 2017.
  12. J. Zapoměl. Computer Modelling of Lateral Vibration of Rotors Supported by Hydrodynamical Bearings and Squeeze Film Damper. Ostrava: VSB-Technical University of Ostrava, 2007. [in Czech]
  13. E. Krämer. Dynamics of Rotors and Foundations. Berlin, Heidelberg: Springer-Verlag, 1993.
Przejdź do artykułu

Autorzy i Afiliacje

Jaroslav Zapoměl
1 2
Petr Ferfecki
1 3

  1. Department of Applied Mechanics, VSB – Technical University of Ostrava, Ostrava, Czech Republic
  2. Department of Dynamics and Vibration, Institute of Thermomechanics, Prague, Czech Republic
  3. IT4Innovations National Supercomputing Center, VSB – Technical University of Ostrava, Ostrava, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper deals with research on the magnetic bearing control systems for a high-speed rotating machine. Theoretical and experimental characteristics of the control systems with the model algorithmic control (MAC) algorithm and the proportional-derivative (PD) algorithm are presented. The MAC algorithm is the non-parametric predictive control method that uses an impulse response model. A laboratory model of the rotor-bearing unit under study consists of two active radial magnetic bearings and one active axial (thrust) magnetic bearing. The control system of the rotor position in air gaps consists of the fast prototyping control unit with a signal processor, the input and output modules, power amplifiers, contactless eddy current sensors and the host PC with dedicated software. Rotor displacement and control current signals were registered during investigations using a data acquisition (DAQ) system. In addition, measurements were performed for various rotor speeds, control algorithms and disturbance signals generated by the control system. Finally, the obtained time histories were presented, analyzed and discussed in this paper.
Przejdź do artykułu

Bibliografia

  1.  P.-H. Kuo, R.-M. Lee, and C.-C. Wang, “A High-Precision Random Forest-Based Maximum Lyapunov Exponent Prediction Model for Spherical Porous Gas Bearing Systems,” IEEE Access, vol. 8, pp. 168079‒168086, 2020, doi: 10.1109/ACCESS.2020.3022854.
  2.  E. Brusa, “Semi-active and active magnetic stabilisation of supercritical rotor dynamics by contra-rotating damping,” Mechatronics, vol. 24, pp. 500–510, 2014, doi: 10.1016/j.mechatronics.2014.06.001.
  3.  O. Halminen, A. Kärkkäinen, J. Sopanen, and A. Mikkola, “Active magnetic bearing-supported rotor with misaligned cageless backup bearings: A dropdown event simulation model,” Mech. Syst. Signal Process., vol. 50‒51, pp. 692–705, 2015, doi: 10.1016/j. ymssp.2014.06.001.
  4.  J.Y. Hung, G.A. Nathaniel, and F. Xia, “Non-linear control of a magnetic bearing system,” Mechatronics, vol. 13, pp. 621–637, 2003, doi: 10.1016/S0957-4158(02)00034-X.
  5.  J. Sawicki, E.H. Maslen, and K.R. Bischof, “Modeling and performance evaluation of machining spindle with active magnetic bearings,” J. Mech. Sci. Technol., vol. 21, pp. 847–850, 2007, doi: 10.1007/BF03027055.
  6.  R. Siva Srinivas, R. Tiwari, and Ch. Kannababu, “Application of active magnetic bearings in flexible rotordynamic systems – A state-of- the-art review,” Mech. Syst. Signal Process., vol. 106, pp. 537‒572, 2018.
  7.  K. Falkowski, M. Henzel, and M. Żokowski, “The analysis of the control system for the bearingless induction electric motor,” J. Vibroeng., vol. 14, no. 1, pp.16‒21, 2012.
  8.  R. Stocki, T. Szolc, P. Tauzowski, and J. Knabel, “Robust design optimisation of the vibrating rotor shaft system subjected to selected dynamic constraints,” Mech. Syst. Signal Process., vol. 29, pp. 34‒44, 2012, doi: 10.1016/j.ymssp.2011.07.023.
  9.  T. Szolc, K. Falkowski, M. Henzel, and P. Kurnyta-Mazurek, “Determination of parameters for a design of the stable electro-dynamic passive magnetic support of a high-speed flexible rotor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 91‒105, 2019, doi: 10.24425/ bpas.2018.125719.
  10.  S. Zhe et al., “Identification of active magnetic bearing system with a flexible rotor,” Mech. Syst. Signal Process., vol. 49, pp. 302–316, 2014.
  11.  A. Chiba et al., Magnetic bearings and bearingless drives, Elsevier’s Science Technology Rights Department in Oxford, UK, 2005.
  12.  G. Schweitzer, A. Traxler, and H. Bleuler, Magnetlager: Grundlagen, Eigenshaften und Anwendungen berührungsfreier elektromagnetischer Lager, Springer Verlag, Berlin, 1992.
  13.  A. Piłat, “Modelling, investigation, simulation, and PID current control of active magnetic levitation FEM model,” Methods and Models in Automation and Robotics (MMAR), 18th International Conference on Methods and Models in Automation and Robotics, Poland, 2013, pp. 299–304, doi: 10.1109/MMAR.2013.6669923.
  14.  B. Tomczuk, J. Zimon, and K. Zakrzewski, “Integral parameters determination in the magnetic bearing using finite element method,” Computational Electromagnetics (CEM), 6th International Conference on Computational Electromagnetics, Germany, 2006, pp. 1‒4.
  15.  Z. Gosiewski and A. Mystkowski, “Robust control of active magnetic suspension: analytical and experimental results,” Mech. Syst. Signal Process., vol. 22, no. 6, pp. 1297‒1303, 2008, doi: 10.1016/j.ymssp.2007.08.005.
  16.  M. Henzel and P. Mazurek, “The analysis of the control system of the active magnetic bearing,” Electrodynamic and Mechatronic Systems, 3rd International Students Conference on Electrodynamics and Mechatronics (SCE III), Opole, Poland, 2011, pp. 53‒58, doi: 10.1109/ SCE.2011.6092124.
  17.  A.M. Beizama, J.M. Echeverria, M. Martinez-Iturralde, I. Egana, and L. Fontan, “Comparison between pole-placement control and sliding mode control for 3-pole radial magnetic bearings,” 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2008, pp. 1315‒1320, doi: 10.1109/SPEEDHAM.2008.4581115.
  18.  Ch.Wu and Ch. Zhu, “Implicit generalised predictive control of an active magnetic bearing system,” 17th International Conference on Electrical Machines and Systems, Hangzhou, China, 2014, pp. 2319–2323.
  19.  K.S. Holkar and L.M. Waghmare, “An overview of model predictive controller,” Int. J.Control Autom., vol. 3, no. 4, pp. 47–64, 2010.
  20.  A.D. Lewis, A Mathematical Approach to Classical Control, Queen’s University, Canada, 2003.
  21.  G. Genta, Dynamics of Rotating Systems, Springer Science + Business Media, Inc., Mechanical Engineering Series, 2005.
  22.  A. Ammar et al., “An experimental assessment of direct torque control and model predictive control methods for induction machine drive,” International Conference on Electrical Sciences and Technologies in Maghreb, Algiers, 2018, pp. 1‒6, doi: 10.1109/CISTEM.2018.8613419.
  23.  K.T. Wrobel, K. Szabat, and P. Serkies, “Long-horizon model predictive control of induction motor drive,” Arch. Electr. Eng., vol. 68, no. 3, pp. 579–593, 2019.
  24.  P. Kurnyta-Mazurek, A. Kurnyta, and M. Henzel, “Analysis of the method of predictive control applicable to active magnetic suspension systems of aircraft engines,” Research Works of Air Force Institute of Technology, vol. 37, pp. 195‒206, 2015, doi: 10.1515/afit-2015- 0034.
  25.  A. Niederliński, J. Mościński, and Z. Ogonowski, Adaptive control, Scientific Publisher PWN, Warsaw, 1995 [in Polish].
  26.  P. Kurnyta-Mazurek, T. Szolc, M. Henzel, and K. Falkowski: ”Analysis of control methods for the jet engine rotor with magnetic bearings,” Proceedings of 14th International Conference on SIRM 2021 – Dynamics of Rotating Machines, Gdansk, Poland, 2021.
Przejdź do artykułu

Autorzy i Afiliacje

Paulina Kurnyta-Mazurek
1
Tomasz Szolc
2
ORCID: ORCID
Maciej Henzel
1
Krzysztof Falkowski
1

  1. Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland
  2. Institute of Fundamental Technological Research, Polish Academy of Science, ul. Adolfa Pawińskiego 5B, 02-106, Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

A gyroscopic rotor exposed to unbalance is studied and controlled with an active piezoelectrical bearing. A model is required in order to design a suited controller. Due to the lack of related publications utilizing piezoelectrical bearings and obtaining a modal model purely exploiting experimental modal analysis, this paper reveals a method to receive a modal model of a gyroscopic rotor system with an active piezoelectrical bearing. The properties of the retrieved model are then incorporated into the design of an originally model-free control approach for unbalance vibration elimination, which consists of a simple feedback control and an adaptive feedforward control. After the discussion on the limitations of the model-free control, a modified controller using the priorly identified modal model is implemented on an elementary rotor test-rig comparing its performance to the original model-free controller.
Przejdź do artykułu

Bibliografia

  1.  A.B. Palazzolo, R.R. Lin, R.M. Alexander, A.F. Kascak, and J. Montague, “Test and theory for piezoelectric actuator-active vibration control of rotating machinery,” J. Vib. Acoust., vol.  113, no. 2, 1991. doi: 10.1115/1.2930165.
  2.  R. Köhler, C. Kaletsch, M. Marszolek, and S. Rinderknecht, “Active vibration damping of engine rotor considering piezo electric self heating effects,” in International Symposium on Air Breathing Engines 2011 (ISABE 2011), Gothenburg, Sep. 2011.
  3.  M. Borsdorf, R.S. Schittenhelm, and S. Rinderknecht, “Vibration reduction of a turbofan engine high pressure rotor with piezoelectric stack actuators,” in Proceedings of the International Symposium on Air Breathing Engines 2013 (ISABE 2013), Busan, 2013.
  4.  R.C. Simões, V. Steffen, J. Der Hagopian, and J. Mahfoud, “Modal active vibration control of a rotor using piezoelectric stack actuators,” Vib. Control, vol. 13, no. 1, pp. 45–64, Jan. 2007. doi: 10.1177/1077546306070227.
  5.  B. Riemann, M.A. Sehr, R.S. Schittenhelm, and S. Rinderknecht, “Robust control of flexible high-speed rotors via mixed uncertainties,” in 2013 European Control Conference (ECC). Zürich: IEEE, Jul. 2013, pp. 2343–2350. doi: 10.23919/ ECC.2013.6669786.
  6.  F.B. Becker, M.A. Sehr, and S. Rinderknecht, “Vibration isolation for parameter-varying rotor systems using piezoelectric actuators and gain-scheduled control,” J. Intell. Mater. Syst. Struct., vol. 28, no. 16, pp. 2286–2297, Sep. 2017. doi: 10.1177/1045389X17689933.
  7.  M. Li, T.C. Lim, and W.S. Shepard, “Modeling active vibration control of a geared rotor system,” Smart Mater. Struct., vol.  13, no. 3, pp. 449–458, Jun. 2004. doi: 10.1088/0964- 1726/13/3/001.
  8.  Y. Suzuki and Y. Kagawa, “Vibration control and sinusoidal external force estimation of a flexible shaft using piezoelectric actuators,” Smart Mater. Struct., vol. 21, no. 12, Dec. 2012. doi: 10.1088/0964-1726/21/12/125006.
  9.  O. Lindenborn, B. Hasch, D. Peters, and R. Nordmann, “Vibration reduction and isolation of a rotor in an actively supported bearing using piezoelectric actuators and the FXLMS algorithm,” in 9th International Conference on Vibrations in Rotating Machinery, Exeter, Sep. 2008.
  10.  R.S. Schittenhelm, S. Bevern, and B. Riemann, “Aktive Schwingungsminderung an einem gyroskopiebehafteten Rotorsystem mittels des FxLMS-Algorithmus,” in SIRM 2013 – 10. Internationale Tagung Schwingungen in rotierenden Maschinen, Berlin, Deutschland, Feb. 2013.
  11.  S. Heindel, P.C. Müller, and S. Rinderknecht, “Unbalance and resonance elimination with active bearings on general rotors,” J. Sound Vib., vol. 431, pp. 422–440, Sep. 2018. doi: 10.1016/j.jsv.2017.07.048.
  12.  B. Vervisch, K. Stockman, and M. Loccufier, “A modal model for the experimental prediction of the stability threshold speed,” Appl. Math. Modell., vol. 60, pp. 320–332, Aug. 2018. doi: 10.1016/j.apm.2018.03.020.
  13.  S. Kuo and D. Morgan, “Active noise control: a tutorial review,” Proc. IEEE, vol. 87, no. 6, pp. 943–975, Jun. 1999. doi: 10.1109/5.763310.
  14.  J. Jiang and Y. Li, “Review of active noise control techniques with emphasis on sound quality enhancement,” Appl. Acoust., vol. 136, pp. 139–148, Jul. 2018. doi: 10.1016/j.apacoust. 2018.02.021.
  15.  L.P. de Oliveira, B. Stallaert, K. Janssens, H. Van der Auweraer, P. Sas, and W. Desmet, “NEX-LMS: A novel adaptive control scheme for harmonic sound quality control,” Mech. Syst. Signal Process., vol. 24, no. 6, pp. 1727–1738, Aug. 2010. doi: 10.1016/j.ymssp.2010.01.004.
  16.  S.S. Narayan, A.M. Peterson, and M.J. Narasimha, “Transform domain LMS algorithm,” IEEE Trans. Acoust. Speech Signal Process., vol. 31, no. 3, pp. 609–615, Jun. 1983.
  17.  J. Jungblut, D.F. Plöger, P. Zech, and S. Rinderknecht, “Order tracking based least mean squares algorithm,” in Proceedings of 8th IFAC Symposium on Mechatronic Systems MECHATRONICS 2019, Vienna, Sep. 2019, pp. 465–470.
  18.  J. Jungblut, C. Fischer, and S. Rinderknecht, “Supplementary data: Active vibration control of a gyroscopic rotor using experimental modal analysis,” 2020. [Online]. doi: 10.48328/tudatalib-572.
Przejdź do artykułu

Autorzy i Afiliacje

Jens Jungblut
1
ORCID: ORCID
Christian Fischer
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Squeeze film dampers (SFDs) are commonly used in turbomachinery in order to introduce external damping, thereby reducing rotor vibrations and acoustic emissions. Since SFDs are of similar geometry as hydrodynamic bearings, the REYNOLDS equation of lubrication can be utilised to predict their dynamic behaviour. However, under certain operating conditions, SFDs can experience significant fluid inertia effects, which are neglected in the usual REYNOLDS analysis. An algorithm for the prediction of these effects on the pressure build up inside a finite-length SFD is therefore presented. For this purpose, the REYNOLDS equation is extended with a first-order perturbation in the fluid velocities to account for the local and convective inertia terms of the NAVIER-STOKES equations. Cavitation is taken into account by means of a mass conserving two-phase model. The resulting equation is then discretized using the finite volume method and solved with an LU factorization. The developed algorithm is capable of calculating the pressure field, and thereby the damping force, inside an SFD for arbitrary operating points in a time-efficient manner. It is therefore suited for integration into transient simulations of turbo machinery without the need for bearing force coefficient maps, which are usually restricted to circular centralized orbits. The capabilities of the method are demonstrated on a transient run-up simulation of a turbocharger rotor with two semi-floating bearings. It can be shown that the consideration of fluid inertia effects introduces a significant shift of the pressure field inside the SFDs, and therefore the resulting damper force vector, at high oil temperatures and high rotational speeds. The effect of fluid inertia on the kinematic behaviour of the whole system on the other hand is rather limited for the examined rotor.
Przejdź do artykułu

Bibliografia

  1.  M.B. Banerjee, R. Shandil, S. Katyal, G. Dube, T. Pal, and K. Banerjee, “A nonlinear theory of hydrodynamic lubrication,” J. Math. Anal. Appl., vol. 117, no. 1, pp. 48–56, 1986.
  2.  S. Hamzehlouia and K. Behdinan, “Squeeze film dampers supporting high-speed rotors: Fluid inertia effects,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., vol. 234, no. 1, pp. 18–32, 2020.
  3.  M. Ramli, J. Ellis, and J. Roberts, “On the computation of inertial coefficients in squeeze-film bearings,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 201, no. 2, pp. 125–131, 1987, doi: 10.1243/PIME_PROC_1987_201_095_02.
  4.  E. Reinhardt and J. Lund, “Influence of fluid inertia on the dynamic properties of journal bearings.” J. Lubr. Technol., vol. 97 Ser F, no. 2, pp. 159–167, 1975.
  5.  A.Z. Szeri, A.A. Raimondi, and A. Giron-Duarte, “Linear Force Coefficients for Squeeze-Film Dampers,” J. Lubr. Technol., vol. 105, no. 3, pp. 326–334, 07 1983.
  6.  A.Z. Szeri, Fluid Film Lubrication: Theory and Design. Cambridge University Press, 1998.
  7.  Z. Guo, T. Hirano, and R.G. Kirk, “Application of CFD analysis for rotating machinery: Part 1 — hydrodynamic, hydrostatic bearings and squeeze film damper,” in Volume 4: Turbo Expo 2003. ASME, 2003, doi: 10.1115/gt2003-38931.
  8.  C. Xing, M.J. Braun, and H. Li, “A three-dimensional navierstokes- based numerical model for squeeze film dampers. part 2—ef- fects of gaseous cavitation on the behavior of the squeeze film damper,” Tribol. Trans., vol. 52, no. 5, pp. 695–705, Sep 2009, doi: 10.1080/10402000902913311.
  9.  V. Constantinescu, Laminar Viscous Flow. Berlin Heidelberg: Springer Science & Business Media, 2012.
  10.  J. Gehannin, M. Arghir, and O. Bonneau, “Complete squeezefilm damper analysis based on the “bulk flow” equations,” Tribol. Trans., vol. 53, no. 1, pp. 84–96, 2009, doi: 10.1080/10402000903226382.
  11.  S. Lang and S. Verlag, Effiziente Berechnung von Gleitlagern und Dichtspalten in Turbomaschinen, ser. Forschungsberichte zur Fluidsys- temtechnik. Shaker Verlag, 2018.
  12.  H. Peeken and J. Benner, “Beeinträchtigung des Druckaufbaus in Gleitlagern durch Schmierstoffverschäumung,” in Gleit- und Wäl- zlagerungen: Gestaltung, Berechnung, Einsatz; Tagung Neu-Ulm, 14. und 15. März 1985 / VDI-Ges. Entwicklung, Konstruktion, Vertrieb. – (VDI-Berichte; 549), 2013, pp. 373–397.
  13.  Ü. Mermertas, “Nichtlinearer Einfluss von Radialgleitlagern auf die Dynamik schnelllaufender Rotoren, Dissertation,” Düren, Aachen, 2003.
  14.  E. Woschke, C. Daniel, and S. Nitzschke, “Excitation mechanisms of non-linear rotor systems with floating ring bearings – simulation and validation,” Int. J. Mech. Sci., vol. 134, pp. 15‒27, 2017, doi: 10.1016/j.ijmecsci.2017.09.038.
  15.  R. Eymard, G. Thierry, and R. Herbin, “Handbook of numerical analysis,” vol. 7, pp. 731–1018, 01 2000.
  16.  V.V. Moca, A. Nagy-Dăbâcan, H. Bârzan, and R. C. Mure¸san, “Superlets: time-frequency super-resolution using wavelet sets,” bioRxiv, 2019.
  17.  S. Hamzehlouia and K. Behdinan, “A study of lubricant inertia effects for squeeze film dampers incorporated into highspeed turboma- chinery,” Lubricants, vol. 5, p. 43, 10 2017, doi: 10.3390/lubricants5040043.
  18.  L. San Andrés and J. Vance, “Effects of fluid inertia and turbulence on the force coefficients for squeeze film dampers,” J. Eng. Gas Turbines Power, vol. 108, 04 1986, doi: 10.1115/1.3239908.
Przejdź do artykułu

Autorzy i Afiliacje

Thomas Drapatow
1
Oliver Alber
2
Elmar Woschke
1
ORCID: ORCID

  1. Institute of Mechanics, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
  2. MAN Energy Solutions SE, 86153 Augsburg, Germany
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Designing touch-down bearings (TDB) for outer rotor flywheels operated under high vacuum conditions constitutes a challenging task. Due to their large diameters, conventional TDB cannot suited well, and a planetary design is applied, consisting of a number of small rolling elements distributed around the stator. Since the amplitude of the peak loads during a drop-down lies close to the static load rating of the bearings, it is expected that their service life can be increased by reducing the maximum forces. Therefore, this paper investigates the influence of elastomer rings around the outer rings in the TDB using simulations. For this purpose, the structure and the models used for contact force calculation in the ANEAS simulation software are presented, especially the modelling of the elastomers. Based on the requirements for a TDB in a flywheel application, three different elastomers (FKM, VMQ, EPDM) are selected for the investigation. The results of the simulations show that stiffness and the type of material strongly influence the maximum force. The best results are obtained using FKM, leading to a reduction of the force amplitude in a wide stiffness range.
Przejdź do artykułu

Bibliografia

  1.  L. Quurck, H. Schaede, M. Richter, and S. Rinderknecht, “High Speed Backup Bearings for Outer-Rotor-Type Flywheels – Proposed Test Rig Design,” in Proceedings of ISMB 14, Linz, Austria, 2014, pp. 109–114.
  2.  L. Quurck, D. Franz, B. Schüßler, and S. Rinderknecht, “Planetary backup bearings for high speed applications and service life estimation methodology,” Mech. Eng. J., vol. 4, no. 5, 2017, doi: 10.1299/mej.17-00010.
  3.  L. Quurck, R. Viitala, D. Franz, and S. Rinderknecht, “Planetary Backup Bearings for Flywheel Applications,” in Proceedings of ISMB 16, Beijing, China, 2018.
  4.  J. Cao, P. Paul Allaire, T. Dimond, C. Klatt, and J.J.J. van Rensburg, “Rotor Drop Analyses and Auxiliary Bearing System Optimization for AMB Supported Rotor/Experimental Validation – Part II: Experiment and Optimization,” in Proceedings of ISMB 15, Kitakyushu, Japan, 2016, 819–825.
  5.  J. Schmied and J.C. Pradetto, “Behaviour of a One Ton Rotor being Dropped into Auxiliary Bearings,” in Proceedings of ISMB 3, Zürich, Schweiz, 1992, pp. 145–156.
  6.  Z. Yili and Z. Yongchun, “Dynamic Responses of Rotor Drops onto Auxiliary Bearing with the Support of Metal Rubber Ring,” Open Mech, Eng. J., vol. 9, no. 1, pp. 1057–1061, 2015, doi: 10.2174/1874155X01509011057.
  7.  A. Bormann, Elastomerringe zur Schwingungsberuhigung in der Rotordynamik: Theorie, Messungen und optimierte Auslegung. Disser- tation. Düsseldorf: VDI-Verl., 2005.
  8.  M. Orth and R. Nordmann, “ANEAS: A Modeling Tool for Nonlinear Analysis of Active Magnetic Bearing Systems,” IFAC Proceedings Volumes, vol. 35, no. 2, pp. 811–816, 2002, doi: 10.1016/S1474-6670(17)34039-9.
  9.  V.L. Popov, Contact Mechanics and Friction: Physical Principles and Applications. Berlin, Heidelberg: Springer, 2017.
  10.  E.P. Gargiulo Jr., “A simple way to estimate bearing stiffness,” Machine Design, vol. 52, no. 17, pp. 107–110, 1980.
  11.  K.H. Hunt and F.R.E. Crossley, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” J. Appl. Mech., vol. 42, no. 2, p. 440, 1975, doi: 10.1115/1.3423596.
  12.  M.C. Marinack, R.E. Musgrave, and C.F. Higgs, “Experimental Investigations on the Coefficient of Restitution of Single Particles,” Tribol. Trans., vol. 56, no. 4, pp. 572–580, 2013, doi: 10.1080/10402004.2012.748233.
  13.  R.J. Mainstone, “Properties of materials at high rates of straining or loading,” Mat. Constr., vol. 8, no. 2, pp. 102–116, 1975, doi: 10.1007/ BF02476328.
  14.  H. Wittel, D. Muhs, D. Jannasch, and J. Voßiek, “Wälzlager und Wälzlagerungen,” in Roloff/Matek Maschinenelemente, H. Wittel, D. Muhs, D. Jannasch, and J. Voßiek, Eds., Wiesbaden: Vieweg+Teubner Verlag, 2009, pp. 475–525.
  15.  J. M. Gouws, “Investigation into backup bearing life using delevitation severity indicators,” North-West University, Potchefstroom, South Africa, 2016.
  16.  G. Sun, “Auxiliary Bearing Life Prediction Using Hertzian Contact Bearing Model,” J. Appl. Mech., vol. 128, no. 2, p.  203, 2006, doi: 10.1115/1.2159036.
  17.  T. Ishii and R. G. Kirk, “Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop,” J. Vib. Acoust., vol. 118, no. 2, pp. 154–163, 1996, doi: 10.1115/1.2889643.
Przejdź do artykułu

Autorzy i Afiliacje

Benedikt Schüßler
1
ORCID: ORCID
Timo Hopf
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Technical University of Darmstadt, Institute for Mechatronic Systems, Germany
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this paper, a new application of the Numerical Assembly Technique is presented for the balancing of linear elastic rotor-bearing systems with a stepped shaft and arbitrarily distributed mass unbalance. The method improves existing balancing techniques by combining the advantages of modal balancing with the fast calculation of an efficient numerical method. The rotating stepped circular shaft is modelled according to the Rayleigh beam theory. The Numerical Assembly Technique is used to calculate the steady-state harmonic response, eigenvalues and the associated mode shapes of the rotor. The displacements of a simulation are compared to measured displacements of the rotor-bearing system to calculate the generalized unbalance for each eigenvalue. The generalized unbalances are modified according to modal theory to calculate orthogonal correction masses. In this manner, a rotor-bearing system is balanced using a single measurement of the displacement at one position on the rotor for every critical speed. Three numerical examples are used to show the accuracy and the balancing success of the proposed method.
Przejdź do artykułu

Bibliografia

  1.  J. Tessarzik, Flexible rotor balancing by the exact point speed influence coefficient method. Latham: Mechanical Technology Incorporated, 1972.
  2.  P. Gnielka, “Modal balancing of flexible rotors without test runs: An experimental investigation,” Journal of Vibrations, vol. 90, no. 2, pp. 152–170, 1982.
  3.  K. Federn, “Grundlagen einer systematischen Schwingungsentstörung wellenelastischer Rotoren,” VDI Bericht, vol. 24, pp.  9‒25, 1957.
  4.  A. G. Parkinson and R. E. D. Bishop, “Residual vibration in modal balancing,” Journal of Mechanical Engineering Science, vol. 7, pp. 33–39, 1965.
  5.  W. Kellenberger, “Das Wuchten elastischer Rotoren auf zwei allgemeinelastischen Lagern,” Brown Boveri Mitteilungen, vol. 54, pp. 603– 617, 1967.
  6.  A.-C. Lee, Y.-P. Shih, and Y. Kang, “The analysis of linear rotor bearing systems: A general Transfer Matrix Method,” Journal of Vibration and Accoustics, vol. 115, no. 4, pp. 490–497, 1993.
  7.  J.-S. Wu and H. M. Chou, “A new approach for determining the natural frequency of mode shapes of a uniform beam carrying any number of sprung masses,” Journal of Sound and Vibration, vol.  220, no. 3, pp. 451–468, 1999.
  8.  J.-S. Wu, F.-T. Lin, and H.-J. Shaw, “Analytical solution for whirling speeds and mode shapes of a distributed-mass shaft with arbitrary rigid disks,” Journal of Applied Mechanics, vol. 81, no. 3, pp. 034 503–1–034 503–10, 2014.
  9.  M. Klanner, M.S. Prem, and K. Ellermann, “Steady-state harmonic vibrations of a linear rotor- bearing system with a discontinuous shaft and arbitrarily distributed mass unbalance,” in Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics, 2020, pp. 1257–1272.
  10.  M. Klanner and K. Ellermann, “Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements,” Applied and Computational Mechanics, vol. 14, no. 1, pp. 31–50, 2019.
  11.  M.B. Deepthikumar, A.S. Sekhar, and M.R. Srikanthan, “Modal balancing of flexible rotors with bow and distributed unbalance,” Journal of Sound and Vibration, vol. 332, pp. 6216‒6233, 2013.
  12.  O.A. Bauchau and J.I. Craig, Structural Analysis – With Applications to Aerospace Structures. Heidelberg: Springer Verlag, 2009.
  13.  R.E.D. Bishop and A.G. Parkinson, “On the isolation of modes in balancing of flexible shafts,” Proc. Inst. Mech. Eng., vol. 117, pp. 407– 426, 1963.
  14.  X. Rui, G. Wang, Y. Lu, and L. Yunm, “Transfer Matrix Method for linear multibody systems,” Multibody Syst. Dyn., vol.  19, pp. 179–207, 2008.
  15.  I.N. Bronstein, K.A. Semendjajew, and E. Zeidler, Taschenbuch der Mathematik. Stuttgard: Teubner, 1996.
  16.  D. Bestle, L. Abbas, and X. Rui, “Recursive eigenvalue search algorithm for transfer matrix method of linear flexible multibody systems,” Multibody Syst. Dyn., vol. 32, pp. 429–444, 2013.
  17.  B. Xu and L. Qu, “A new practical modal method for rotor balancing,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 215, pp.  179–190, 2001.
  18.  J. Tessarzik, Flexible rotor balancing by the influence coefficient method. Part 1: Evaluation of the exact point speed and least squares procedure. Latham: Mechanical Technology Incorporated, 1972.
Przejdź do artykułu

Autorzy i Afiliacje

Georg Quinz
1
Marcel S. Prem
1
Michael Klanner
1
ORCID: ORCID
Katrin Ellermann
1

  1. Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Vibration in rotating machinery leads to a series of undesired effects, e.g. noise, reduced service life or even machine failure. Even though there are many sources of vibrations in a rotating machine, the most common one is mass unbalance. Therefore, a detailed knowledge of the system behavior due to mass unbalance is crucial in the design phase of a rotor-bearing system. The modelling of the rotor and mass unbalance as a lumped system is a widely used approach to calculate the whirling motion of a rotor-bearing system. A more accurate representation of the real system can be found by a continuous model, especially if the mass unbalance is not constant and arbitrarily oriented in space. Therefore, a quasi-analytical method called Numerical Assembly Technique is extended in this paper, which allows for an efficient and accurate simulation of the unbalance response of a rotor-bearing system. The rotor shaft is modelled by the Rayleigh beam theory including rotatory inertia and gyroscopic effects. Rigid discs can be mounted onto the rotor and the bearings are modeled by linear translational/rotational springs/dampers, including cross-coupling effects. The effect of a constant axial force or torque on the system response is also examined in the simulation.
Przejdź do artykułu

Bibliografia

  1.  J.W. Lund and F.K. Orcutt, “Calculations and Experiments on the Unbalance Response of a Flexible Rotor,” J. Eng. Ind., vol. 89, no. 4, pp. 785–796, 1967.
  2.  A. Vollan and L. Komzsik, Computational Techniques of Rotor Dynamics with the Finite Element Method. Boca Raton: CRC Press, 2012.
  3.  J.S. Rao, Rotor Dynamics. New Delhi: New Age International, 1996.
  4.  A.-C. Lee and Y.-P. Shih, “The Analysis of Linear Rotor-Bearing Systems: A General Transfer Matrix Method,” J. Vib. Acoust., vol. 115, no. 4, pp. 490–497, 1993.
  5.  T. Yang and C. Lin, “Estimation of Distributed Unbalance of Rotors,” J. Eng. Gas Turbines Power, vol. 124, no. 4, pp. 976‒983, 2002.
  6.  J.-S. Wu and H.-M. Chou, “A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses,” J. Sound Vib., vol. 81, no. 3, pp.  1–10, 1999.
  7.  J.-S. Wu, F.-T. Lin, and H.-J. Shaw, “Analytical Solution for Whirling Speeds and Mode Shapes of a Distributed-Mass Shaft With Arbitrary Rigid Disks,” J. Appl. Mech., vol. 220, no.  3, pp. 451–468, 2014.
  8.  M. Klanner and K. Ellermann, “Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements,” Appl. Comput. Mech., vol. 14, no. 1, pp. 31–50, 2020.
  9.  M. Klanner, M.S. Prem, and K. Ellermann, “Steady-state harmonic vibrations of a linear rotor-bearing system with a discontinuous shaft and arbitrary distributed mass unbalance,” in Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics, Leuven, Belgium, Sep. 2020, pp. 1257–1272.
  10.  H. Ziegler, “Knickung gerader Stäbe unter Torsion,” J. Appl. Math. Phys. (ZAMP), vol. 3, pp. 96–119, 1952.
  11.  V.V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability. New York: Pergamon Press, 1963.
  12.  H. Ziegler, Principles of Structural Stability. Basel: Springer Basel AG, 1977.
  13.  L. Debnath and D. Bhatta, Integral Transforms and Their Applications. CRC Press, 2015.
  14.  D. Mitrinović and J.D. Kečkić, The Cauchy Method of Residues. D. Reidel Publishing, 1984.
  15.  S.I. Hayek, Advanced Mathematical Methods in Science and Engineering. CRC Press, 2010.
  16.  B. Adcock, D. Huybrechs, and J. Martín-Vaquero, “On the Numerical Stability of Fourier Extensions,” Found. Comput. Math., vol. 14, no. 4, pp. 638–687, 2014.
  17.  R. Matthysen and D. Huybrechs, “Fast Algorithms for the Computation of Fourier Extensions of Arbitrary Length,” SIAM J. Sci. Comput., vol. 38, no. 2, pp. A899–A922, 2016.
  18.  A.-C. Lee, Y. Kang, and L. Shin-Li, “A Modified Transfer Matrix Method for Linear Rotor-Bearing Systems,” J. Appl. Mech., vol. 58, no. 3, pp. 776–783, 1991.
  19.  M.I. Friswell, J.E. T. Penny, S.D. Garvey, and A.W. Lees, Dynamics of Rotating Machines. New York: Cambridge University Press, 2010.
  20.  A. De Felice and S. Sorrentino, “On the dynamic behaviour of rotating shaftsunder combined axial and torsional loads,” Meccanica, vol. 54, no. 7, pp. 1029–1055, 2019.
  21.  R.L. Eshleman and R.A. Eubanks, “On the Critical Speeds of a Continuous Rotor,” J. Manuf. Sci. Eng., vol. 91, no. 4, pp. 1180‒1188, 1969.
Przejdź do artykułu

Autorzy i Afiliacje

Michael Klanner
1
ORCID: ORCID
Marcel S. Prem
1
Katrin Ellermann
1

  1. Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

To achieve acceptable dynamical behavior for large rotating machines operating at subcritical speeds, the balancing quality check at the planned service speed in the installation location is often demanded for machines such as turbo-generators or high-speed machines. While most studies investigate the balancing quality at critical speeds, only a few studies have investigated this aspect using numerical methods at operational speed. This study proposes a novel, model-based method for inversely estimating initial residual unbalance in one and two planes after initial grade balancing for large flexible rotors operating at the service speeds. The method utilizes vibration measurements from two planes in any single direction, combined with a finite element model of the rotor to inversely determine the residual unbalance in one and two planes. This method can be practically used to determine the initial and residual unbalance after the balancing process, and further it can be used for condition-based monitoring of the unbalance state of the rotor.
Przejdź do artykułu

Bibliografia

  1.  A. Shrivastava and A.R. Mohanty, “Estimation of single plane unbalance parameters of a rotor-bearing system using kalman filtering based force estimation technique,” J. Sound Vib., vol.  418, pp. 184–199, 2018, doi: 10.1016/j.jsv.2017.11.020.
  2.  E. Thearle, “Dynamic balancing of rotating machinery in the field,” Trans. ASME, vol. 56, no. 10, pp. 745–753, 1934.
  3.  K. Hopkirk, “Notes on methods of balancing,” The engineer, vol. 170, pp. 38–39, 1940.
  4.  S. Zhou, S.W. Dyer, K.-K. Shin, J. Shi, and J. Ni, “Extended Influence Coefficient Method for Rotor Active Balancing During Acceleration,” J. Dyn. Syst. Meas. Contr., vol. 126, no. 1, pp. 219–223, 04 2004, doi: 10.1115/1.1651533.
  5.  T.P. Goodman, “A Least-Squares Method for Computing Balance Corrections,” J. Eng. Ind., vol. 86, no. 3, pp.  273–277, 08 1964, doi: 10.1115/1.3670532.
  6.  M.S. Darlow, “Balancing of high-speed machinery: Theory, methods and experimental results,” Mech. Syst. Sig. Process., vol.  1, no. 1, pp. 105–134, 1987, doi: 10.1016/0888-3270(87)90087-2.
  7.  E. Gunter et al., “Balancing of multimass flexible rotors,” in Proceedings of the 5th Turbomachinery Symposium. Texas A&M University. Gas Turbine Laboratories, 1976, doi: 10.21423/R1W38D.
  8.  R.E.D. Bishop and G.M.L. Gladwell, “The vibration and balancing of an unbalanced flexible rotor,” J. Mech. Eng. Sci., vol. 1, no. 1, pp. 66–77, 1959, doi: 10.1243/JMES_JOUR_1959_001_010_02.
  9.  R.E.D. Bishop, “On the possibility of balancing rotating flexible shafts,” J. Mech. Eng. Sci., vol. 24, no. 4, pp.  215–220, 1982, doi: 10.1243/ JMES_JOUR_1982_024_040_02.
  10.  J.W. Lund and J. Tonnesen, “Analysis and experiments on multiplane balancing of a flexible rotor,” J. Eng. Ind., vol. 94, no. 1, pp. 233–242, 1972, doi: 10.1115/1.3428116.
  11.  M.S. Darlow, Review of Literature on Rotor Balancing. New York, NY: Springer New York, 1989, pp. 39–52, doi: 10.1007/978-1-4612- 3656-6_3.
  12.  ISO, “Mechanical vibration. rotor balancing. part 11: Procedures and tolerances for rotors with rigid behaviour,” International Organization for Standardization, Geneva, CH, Standard ISO 21940‒11:2016, 2016. [Online]. Available: https://www.iso.org/standard/54074.html.
  13.  R. Platz and R. Markert, “Fault models for online identification of malfunctions in rotor systems,” Transactions of the 4th Internation- al Conference Acoustical and Vibratory Surveillance, Methods and Diagnostic Techniques, University of Compiegne, France, vol. 2, pp. 435–446., 2001.
  14.  R. Markert, R. Platz, and M. Seidler, “Model based fault identification in rotor systems by least squares fitting,” Int. J. Rotating Mach., vol. 7, no. 5, pp. 311–321, 2001.
  15.  J.R. Jain and T.K. Kundra, “Model based online diagnosis of unbalance and transverse fatigue crack in rotor systems,” Mech. Res. Com- mun., vol. 31, no. 5, pp. 557–568, 2004.
  16.  G.N.D.S. Sudhakar and A.S. Sekhar, “Identification of unbalance in a rotor bearing system,” J. Sound Vib., vol. 330, no. 10, pp. 2299–2313, 2011.
  17.  J. Yao, L. Liu, F. Yang, F. Scarpa, and J. Gao, “Identification and optimization of unbalance parameters in rotor-bearing systems,” J. Sound Vib., vol. 431, pp. 54–69, 2018.
  18.  N. Bachschmid, P. Pennacchi, and A. Vania, “Identification of multiple faults in rotor systems,” J. Sound Vib., vol.  254, no. 2, pp. 327–366, 2002.
  19.  P. Pennacchi, R. Ferraro, S. Chatterton, and D. Checcacci, “A model-based prediction of balancing behavior of rotors above the speed range in available balancing systems,” in Turbo Expo: Power for Land, Sea, and Air, vol. 10 B. Virtual, Online: American Society of Mechanical Engineers, September, 2020, p. V10BT29A015.
  20.  P. Pennacchi, “Robust estimation of excitations in mechanical systems using m-estimators – experimental applications,” J. Sound Vib., vol. 319, no. 1‒2, pp. 140–162, 2009.
  21.  D. Zou, H. Zhao, G. Liu, N. Ta, and Z. Rao, “Application of augmented Kalman filter to identify unbalance load of rotorbearing system: Theory and experiment,” J. Sound Vib., vol. 463, p.  114972, 2019.
  22.  O. Mey, W. Neudeck, A. Schneider, and O. Enge-Rosenblatt, “Machine learning-based unbalance detection of a rotating shaft using vibration data,” in 25th IEEE International Conference on Emerging Technologies and Factory Automation, Vienna, Austria, September, 2020, pp. 1610–1617.
  23.  G. Hübner, H. Pinheiro, C. de Souza, C. Franchi, L. da Rosa, and J. Dias, “Detection of mass imbalance in the rotor of wind turbines using support vector machine,” Renewable Energy, vol. 170, pp. 49–59, 2021, doi: 10.1016/j.renene.2021.01.080.
  24.  A.A. Pinheiro, I.M. Brandao, and C. Da Costa, “Vibration analysis in turbomachines using machine learning techniques,” Eur. J. Eng. Technol. Res., vol. 4, no. 2, pp. 12–16, 2019.
  25.  J.K. Sinha, A. Lees, and M. Friswell, “Estimating unbalance and misalignment of a flexible rotating machine from a single rundown,” J. Sound Vib., vol. 272, no. 3‒5, pp. 967–989, 2004.
  26.  J. Sinha, M. Friswell, and A. Lees, “The identification of the unbalance and the foundation model of a flexible rotating machine from a single run-down,” Mech. Syst. Sig. Process., vol. 16, no. 2, pp. 255–271, 2002, doi: 10.1006/mssp.2001.1387.
  27.  S. Edwards, A. Lees, and M. Friswell, “Experimental identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run-down,” J. Sound Vib., vol. 232, no. 5, pp. 963–992, 2000.
  28.  A. Lees, J.K. Sinha, and M. Friswell, “The identification of the unbalance of a flexible rotating machine from a single rundown,” J. Eng. Gas Turbines Power, vol. 126, no. 2, pp. 416–421, 2004.
  29.  A. Lees, J.K. Sinha, and M.I. Friswell, “Estimating rotor unbalance and misalignment from a single run-down,” in Mater. Sci. Forum, vol. 440. Trans Tech Publ, 2003, pp. 229–236.
  30.  S.M. Ibn Shamsah and J.K. Sinha, “Rotor unbalance estimation with reduced number of sensors,” Machines, vol. 4, no. 4, p.  19, 2016.
  31.  S.I. Shamsah, J. Sinha, and P. Mandal, “Application of modelbased rotor unbalance estimation using reduced sensors and data from a single run-up,” in 2nd International Conference on Maintenance Engineering (IncoME-II), 2017.
  32.  S.M.I. Shamsah, J.K. Sinha, and P. Mandal, “Estimating rotor unbalance from a single run-up and using reduced sensors,” Measurement, vol. 136, pp. 11–24, 2019.
  33.  E. Knopf, T. Krüger, and R. Nordmann, “Residual unbalance determination for flexible rotors at operational speed,” in Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, P. Pennacchi, Ed. Cham: Springer International Publishing, 2015, pp.  757–768, doi: 10.1007/978-3-319-06590-8_62.
  34.  Y. Khulief, M. Mohiuddin, and M. El-Gebeily, “A new method for field-balancing of high-speed flexible rotors without trial weights,”Int. J. Rotating Mach., vol. 2014, 2014, doi: 10.1155/2014/603241.
  35.  R. Nordmann, E. Knopf, and B. Abrate, “Numerical analysis of influence coefficients for on-site balancing of flexible rotors,” in Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM, K.L. Cavalca and H.I. Weber, Eds. Cham: Springer International Publishing, 2019, pp. 157–172, doi: 10.1007/978-3-319-99272-3_12.
  36.  ISO, “Mechanical vibration. rotor balancing. part 12: Procedures and tolerances for rotors with flexible behavior,” International Organization for Standardization, Geneva, CH, Standard ISO 21940-12, 2016, https://www.iso.org/standard/50429.html.
  37.  M.I. Friswell, J.E. Penny, A.W. Lees, and S.D. Garvey, Dynamics of rotating machines. Cambridge University Press, 2010.
  38.  P. Kuosmanen and P. Väänänen, “New highly advanced roll measurement technology,” in Proc. 5th International Conference on New Available Techniques, The World Pulp and Paper Week, 1996, pp.  1056–1063.
  39.  H. Kato, R. Sone, and Y. Nomura, “In-situ measuring system of circularity using an industrial robot and a piezoactuator,” Int. J. Jpn. Soc. Precis. Eng., vol. 25, no. 2, pp. 130–135, 1991.
  40.  P. McFadden, “A revised model for the extraction of periodic waveforms by time domain averaging,” Mech. Syst. Sig. Process., vol. 1, no. 1, pp. 83–95, 1987, doi: 10.1016/0888-3270(87)90085-9.
  41.  H.D. Nelson, “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” J. Mech. Des., vol. 102, no. 4, pp. 793‒803, 10 1980, doi: 10.1115/1.3254824.
  42.  K. Cavalca, P. Cavalcante, and E. Okabe, “An investigation on the influence of the supporting structure on the dynamics of the rotor system,” Mech. Syst. Sig. Process., vol. 19, no. 1, pp.  157–174, 2005, doi: 10.1016/j.ymssp.2004.04.001.
  43.  P.F. Cavalcante and K. Cavalca, “A method to analyse the interaction between rotor-foundation systems,” in SPIE proceedings series, 1998, pp. 775–781.
  44.  B. Ghalamchi, J. Sopanen, and A. Mikkola, “Modeling and dynamic analysis of spherical roller bearing with localized defects: analytical formulation to calculate defect depth and stiffness,” Shock Vib., vol. 2016, 2016, doi: 10.1155/2016/2106810.
  45.  T. Choudhury, R. Viitala, E. Kurvinen, R. Viitala, and J. Sopanen, “Unbalance estimation for a large flexible rotor using force and dis- placement minimization,” Machines, vol. 8, no. 3, 2020, doi: 10.3390/machines8030039.
  46.  J. Juhanko, E. Porkka, T. Widmaier, and P. Kuosmanen, “Dynamic geometry of a rotating cylinder with shell thickness variation,” Est. J. Eng., vol. 16, no. 4, p. 285, 2010.
Przejdź do artykułu

Autorzy i Afiliacje

Satish Bastakoti
1
Tuhin Choudhury
1
ORCID: ORCID
Risto Viitala
2
ORCID: ORCID
Emil Kurvinen
1
ORCID: ORCID
Jussi Sopanen
1
ORCID: ORCID

  1. Department of Mechanical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, Finland
  2. Department of Mechanical Engineering, School of Engineering, Aalto University, 00076 Espoo, Finland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The rotating machines with overhung rotors form a broad class of devices used in many types of industry. For this kind of rotor machine in the paper, there is investigated an influence of dynamic and static unbalance of a rotor, parallel and angular misalignments of shafts, and inner anisotropy of rigid couplings on system dynamic responses. The considerations are performed through a hybrid structural model of the machine rotor-shaft system, consisting of continuous beam finite elements and discrete oscillators. Numerical calculations are carried out for parameters characterizing a heavy blower applied in the mining industry. The main goal of the research is to assess the sensitivity of the imperfections mentioned above on excitation severity of rotor-shaft lateral vibrations and motion stability of the machine in question.
Przejdź do artykułu

Bibliografia

  1. K. Nandakumar and A. Chatterjee, “Nonlinear secondary whirl of an overhung rotor”, in Proc. R. Soc. A., vol. 466, pp. 283–301, 2010, doi: 10.1098/rspa.2009.0262.
  2.  O. Cakmak and K.Y. Sanliturk, “A dynamic model of an overhung rotor with ball bearings”, in Proc. Inst. Mech. Eng., Part K: J. Multi- body Dyn., vol. 255, no. 4, pp. 310–321, 2011, doi: 10.1177/1464419311408949.
  3.  Ch. Fu, X. Ren, Y. Yang, and W. Qin, “Dynamic response analysis of an overhung rotor with interval uncertainties”, Nonlinear Dyn., vol. 89, pp. 2115–2124, 2017, doi: 10.1007/s11071-017-3573-3.
  4.  E. Chipato, A.D. Shaw, and M.I. Friswell, “Frictional effects on the Nonlinear Dynamics, of an overhung rotor”, Commun. Nonlinear Sci. Numer. Simul., vol. 78, p. 104875, 2019.
  5.  ISO 1940/1, ”Balance Quality Requirements of Rigid Rotors”, International Organization for Standardization, 2003.
  6.  K.M. Al-Hussain and I. Redmond, “Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment”, Sound Vib., vol. 249, no. 3, pp. 483–498, 2002.
  7.  K.M. Al-Hussain, “Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment”, J. Sound Vib., vol. 266, no. 2, pp. 217–234, 2002.
  8.  A.W. Lees, “Misalignment in rigidly coupled rotors”, J. Sound Vib., vol. 305, pp. 261–271, 2007.
  9.  I. Redmond, “Study of a misaligned flexibly coupled shaft system having nonlinear bearings and cyclic coupling stiffness – Theoretical model and analysis”, J. Sound Vib., vol. 329, pp. 700–720, 2010.
  10.  J. Didier, J.-J. Sinou and B. Faverjon, “Study of the nonlinear dynamic response of a rotor system with faults and uncertainties”, J. Sound Vib., vol. 331, pp. 671–703, 2012.
  11.  P. Pennacchi, A. Vania, and S. Chatterton, “Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings”, Mech. Syst. Signal Process., no.30, pp. 306–322, 2012.
  12.  A. Muszyńska, Ch.T. Hatch, and D.E. Bently, “Dynamics of anisotropically supported rotors”, Int. J. Rotating Mach., vol. 3, no. 2, pp. 133–142, 1997.
  13.  J. Malta, “Investigation of anisotropic rotor with different shaft orientation”, Doctoral Thesis, Darmstadt University of Technology, Department of Machinery Construction, D 17, Darmstadt, 2009.
  14.  T. Szolc, P. Tauzowski, R. Stocki, and J. Knabel, ”Damage identification in vibrating rotor-shaft systems by efficient sampling approach”, Mech. Syst. Signal Process., vol. 23, pp. 1615–1633, 2009.
  15.  T. Szolc, “On the discrete-continuous modeling of rotor systems for the analysis of coupled lateral-torsional vibrations”, Int. J. Rotating Mach., vol. 6, no. 2, pp. 135–149, 2000.
  16.  T. Szolc, K. Falkowski, M. Henzel, and P. Kurnyta-Mazurek, “The determination of parameters for a design of the stable electro-dynamic passive magnetic support of a high-speed flexible rotor”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 91–105, 2019.
  17.  A. Pręgowska, R. Konowrocki, and T. Szolc, “On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid”, J. Theor. Appl. Mech., vol. 51, no. 4, pp. 979–992, 2013.
  18.  R. Lasota, R. Stocki, P. Tauzowski, and T. Szolc, ”Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 413–422, 2015.
  19.  Y. Ma, Z. Liang, M. Chen, and J. Hong, “Interval analysis of rotor dynamic response with uncertain parameters”, J. Sound Vib., vol. 332, pp. 3869–3880, 2013.
  20.  Z. Qiu and X. Wang, “Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis”, Int. J. Solids Struct., vol. 42, pp. 4958–4970, 2005.
  21.  Ch. Fu, Y. Xu, Y. Yang, K. Lu, F. Gu, and A. Ball, “Response analysis of an accelerating unbalanced rotating system with both random and interval variables”, J. Sound Vib., vol. 466, p. 115047, 2020. https://doi.org/10.1016/j.jsv.2019.115047.
Przejdź do artykułu

Autorzy i Afiliacje

Tomasz Szolc
1
ORCID: ORCID
Robert Konowrocki
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The analysis of subsonic stall flutter in turbomachinery blade cascade is carried out using a medium-fidelity reduced-order aeroelastic numerical model. The model is a type of field mesh-free approach and based on a hybrid boundary element method. The medium-fidelity flow solver is developed on the principle of viscous-inviscid two-way weak-coupling approach. The hybrid flow solver is employed to model separated flow and stall flutter in the 3D blade cascade at subsonic speed. The aerodynamic damping coefficient w.r.t. inter blade phase angle in traveling-wave mode is estimated along with other parameters. The same stability parameter is used to analyze the cascade flutter resistance regime. The estimated results are validated against experimental measurements as well as Navier-Stokes based high fidelity CFD model. The simulated results show good agreement with experimental data. Furthermore, the hybrid flow solver has managed to bring down the computational cost significantly as compared to mesh-based CFD models. Therefore, all the prime objectives of the research have been successfully achieved.
Przejdź do artykułu

Bibliografia

  1.  “Nuclear power: 2 largest steam turbine ever made,” 2020, (Accessed: 2020-10-06). [Online]. Available: https://www.ge.com/news/reports.
  2.  T. Rice, D. Bell, and G. Singh, “Identification of the stability margin between safe operation and the onset of blade flutter,” J. Turbomach., vol. 131, no. 1, 2009, doi: 10.1115/1.2812339.
  3.  J. Kiciński, “The flutter effect in rotating machines,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 195–207, 2004.
  4.  M. Vahdati, N. Smith, and F. Zhao, “Influence of Intake on Fan Blade Flutter,” J. Turbomach., vol. 137, no. 8, 08 2015, doi: 10.1115/1.4029240.
  5.  J.D. Jeffers and C.E. Meece Jr, “F100 fan stall flutter problem review and solution,” J. Aircr., vol. 12, no. 4, pp. 350–357, 1975, doi: 10.2514/3.44454.
  6.  R. Rządkowski, V. Gnesin, and L. Kolodyzhnaya, “3d viscous flutter of 11th configuration blade row,” Adv. Vib. Eng., vol. 8, no. 3, pp. 213–228, 2009. [Online]. Available: https://www.elibrary.ru/item.asp?id=27911163.
  7.  J.L. Hess, “Calculation of potential flow about arbitrary threedimensional lifting bodies,” Naval Air Systems Command, Department of the Navy, Final Technical Report MDC J5679-01, 1972. [Online]. Available: https://apps.dtic.mil/sti/citations/AD0755480.
  8.  C.S. Prasad and L. Pešek, “Efficient prediction of classical flutter stability of turbomachinery blade using the boundary element type numerical method,” Eng. Anal. Boundary Elem., vol. 113, pp. 328–345, 2020, doi: 10.1016/j.enganabound.2020.01.013.
  9.  C.S. Prasad, R. Kolman, and L. Pešek, “A cost effective approach for subsonic aeroelastic stability analysis of turbomachinery 3d blade cascade. A reduced order aeroelastic model numerical approach,” Nonlinear Dyn.:under-review, 2021, doi: 10.21203/rs.3.rs-252660/v1.
  10.  V.A. Riziotis and S.G. Voutsinas, “Dynamic stall modelling on airfoils based on strong viscous-inviscid interaction coupling,” Int. J. Numer. Methods Fluids, vol. 56, pp. 185–208, 2008, doi: 10.1002/fld.1525.
  11.  N.R. García, A. Cayron, and J.N. Sørensen, “Unsteady double wake model for the simulation of stalled airfoils,” J. Power Energy Eng., vol. 3, pp. 20–25, 2015. doi: 10.4236/jpee.2015.37004.
  12.  A. Zanon, P. Giannattasio, and C.J. Simão Ferreira, “A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall,” Wind Energy, vol. 16, no. 5, pp. 661–680, 2013, doi: 10.1002/we.1515.
  13.  C. Prasad, Q.-Z. Chen, O. Bruls, F. D’Ambrosio, and G. Dimitriadis, “Aeroservoelastic simulations for horizontal axis wind turbines,” Proc. Inst. Mech. Eng., Part A: J. Power Energy, vol. 231, no. 2, pp. 103–117, 2016, doi: 10.1177/0957650916678725.
  14.  C. Prasad, Q.-Z. Chen, O. Bruls, F. D’Ambrosio, and G. Dimitriadis, “Advanced aeroservoelastic modeling for horizontal axis wind turbines,” in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, July 2014, pp. 3097–3104.
  15.  Z. Goraj, A. Frydrychewicz, R. Świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, S. Suchodolski, and W. Chajec, “High altitude long endurance unmanned aerial vehicle of a new generation – a design challenge for a low cost, reliable and high performance aircraft,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 173–194, 2004.
  16.  C.S. Prasad and L. Pešek, “Analysis of classical flutter in steam turbine blades using reduced order aeroelastic model,” in The 14th Inter- national Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV), Lisabon, Portugal, Sept 2018, pp. 150–156, doi: 10.1051/matecconf/201821115001.
  17.  C.S. Prasad and L. Pešek, “Classical flutter study in turbomachinery cascade using boundary element method for incompressible flows,” in Advances in Mechanism and Machine Science, T. Uhl, Ed. Cham: Springer International Publishing, 2019, pp. 4055–4064, doi: 10.1007/978-3-030-20131-9_404.
  18.  C.S. Prasad and L. Pešek, “Subsonic stall flutter analysis in 2d blade cascade using hybrid boundary element method,” in In Proceedings of the 11th International Conference on Structural Dynamics, EURODYN 2020, Athens, Greece, November 2020, pp. 213–224.
  19.  J. Katz and A. Plotkin, Low-Speed Aerodynamics, 2nd ed. Cambridge University Press, 2001.
  20.  T. Wang and F.N. Coton, “Numerical simulation of wind tunnel wall effects on wind turbine flows,” Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, vol. 3, no. 3, pp. 135–148, 2000, doi: 10.1002/we.35.
  21.  D. Ashby and D. Sandlin, “Application of a low order panel method to complex three-dimensional internal flow problems,” NASA Contractor report 177424, Tech. Rep., 1986. [Online]. Available: https://ntrs.nasa.gov/citations/19860021529.
  22.  C.S. Prasad and G. Dimitriadis, “Application of a 3d unsteady surface panel method with flow separation model to horizontal axis wind turbines,” J. Wind Eng. Ind. Aerodyn., vol. 166, pp. 74–89, 2017, doi: 10.1016/j.jweia.2017.04.005.
  23.  A. Zanon, P. Giannattasio, and C.J. Simão Ferreira, “A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall,” Wind Energy, vol. 16, no. 5, pp. 661–680, 2013.
  24.  Y. Hanamura, H. Tanaka, and K. Yamaguchi, “A simplified method to measure unsteady forces acting on the vibrating blades in cascade,” Bull. JSME, vol. 23, no. 180, pp. 880–887, 1980, doi: 10.1299/jsme1958.23.880.
  25.  E.F. Crawley, “Measurements of aerodynamic damping on the mit transonic rotor,” Cambridge, Mass.: Gas Turbine & Plasma Dynamics Laboratory, Massachusetts Institute of Technology, Tech. Rep., 1981. [Online]. Available: http://hdl.handle.net/1721.1/104728.
  26.  V. Tsymbalyuk and J. Linhart, “Corrections of aerodynamic loadings measurement on vibrating airfoils,” in XVII IMEKO World Congress, Dubrovnik, Croatian Metrology Society. Citeseer, 2003, pp. 358–361.
  27. 3D Viscous Flutter in Turbomachinery Cascade by Godunov- Kolgan Method, ser. Turbo Expo: Power for Land, Sea, and Air, vol. Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B, 05 2006, doi: 10.1115/GT2006-90157.
  28.  R. Galbraith, M. Gracey, and E. Leith, “Summary of pressure data for thirteen aerofoils on the university of Glasgow’s aerofoil database,” GU Aero report-9221 University of Glasgow, 1992.
Przejdź do artykułu

Autorzy i Afiliacje

Chandra Shekhar Prasad
1
Pavel Šnábl
1
ORCID: ORCID
Luděk Pešek
1
ORCID: ORCID

  1. Institute of Thermomechanics of the CAS, Prague, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

State-of-the-art analyses for the rotordynamic assessment of pumps and specific requirements for the simulation tools are described. Examples are a horizontal multistage pump with two fluid film bearings in atmospheric pressure, a horizontal submerged multistage pump with many bearings, and a submerged vertical single-stage pump with water-lubricated bearings. The rotor of the horizontal pump on two bearings is statically overdetermined by the seals and the static bearing forces depend on the deflection in the seals and the bearings. The nonlinear force-displacement relation in the bearings is considered in this paper. The stability of pumps is assessed by Campbell diagrams considering linear seal and bearing properties. Cylindrical bearings can have a destabilizing effect in the case of low loads as in the examples of the submerged pumps. For the pump with many bearings, the influence of the bearing ambient pressure and the bearing specific load on the stability is analyzed. For the vertical pump, the limit cycle, i.e. the vibration level of stabilization, is determined with a nonlinear analysis. All examples have a practical background from engineering work, although they do not exactly correspond to real cases. Analyses were performed with the rotordynamic software MADYN 2000.
Przejdź do artykułu

Bibliografia

  1.  D. Childs, Turbomachinery Rotordynamics, New York, Chichester, Brisbane, Toronto, Singapore: Wiley Inter Science Publication, 1993.
  2.  J. Glienicke, “Feder- und Dämpfungskonstanten von Gleitlagern für Turbomaschinen und deren Einfluss auf das Schwingungsverhalten eines einfachen Rotors,” Dissertation, Technische Hochschule Karlsruhe, 1966.
  3.  J. Lund and K. Thomsen, “A Calculation Method and Data for the Dynamic Coefficients of Oil Lubricated Journal Bearings,” in Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization. New York: ASME, 1978, pp. 1–28.
  4.  X. Cheng, “Einfluss einer Schmierfilmkavitation auf die dynamischen Eigenschaften von Quetschöldämpfern,” Fortschr.-Ber. VDI Reihe 1 no. 243, Düsseldorf, VDI-Verlag.
  5.  A. Fuchs, J. Schmied, and A. Kosenkov, “Hydrodynamic Bearings – State of the Art Calculations,” in Proceedings of the 11th Conference on Vibrations in Rotating Machines (SIRM), Magdeburg, Germany, 2015.
  6.  R. Nordmann and F.J. Dietzen, “Calculating Rotordynamic Coefficients of Seals by Finite-Difference Techniques,” ASME J. Tribol., vol. 109, pp. 388–394, July 1987.
  7.  J. Schmied, “Application of MADYN 2000 to rotor dynamic problems of industrial machinery,” in Proceedings of the 13th International Conference on Dynamics of Rotating Machines (SIRM), Copenhagen, Denmark, 2019.
  8.  American Petroleum Institute, “Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries – ANSI/API Standard 610,” Eleventh Edition, September 2010.
  9.  J. Schmied and A. Fuchs, “Nonlinear Analyses in Rotordynamic Engineering,” in Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM, 2019, vol. 3, pp. 426‒442.
Przejdź do artykułu

Autorzy i Afiliacje

Frédéric Gaulard
1
Joachim Schmied
1
Andreas Fuchs
1

  1. Delta JS AG, Technoparkstrasse 1, 8005 Zürich, Switzerland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents the results of experimental verification on using a zero-sum differential game and H control in the problems of tracking and stabilizing motion of a wheeled mobile robot (WMR). It is a new approach to the synthesis of input-output systems based on the theory of dissipative systems in the sense of the possibility of their practical application. This paper expands upon the problem of optimal control of a nonlinear, nonholonomic wheeled mobile robot by including the reduced impact of changing operating condtions and possible disturbances of the robot’s complex motion. The proposed approach is based on the H∞ control theory and the control is generated by the neural approximation solution to the Hamilton-Jacobi-Isaacs equation. Our verification experiments confirm that the H∞ condition is met for reduced impact of disturbances in the task of tracking and stabilizing the robot motion in the form of changing operating conditions and other disturbances, which made it possible to achieve high accuracy of motion.
Przejdź do artykułu

Bibliografia

  1.  B. Kovács, G. Szayer, F. Tajti, M. Burdelis, and P. Korondi, “A novel potential field method for path planning of mobile robots by adapting animal motion attributes,” Rob. Auton. Syst., vol. 82, pp. 24–34, 2016, doi: 10.1016/j.robot.2016.04.007.
  2.  A. Pandey, “Mobile Robot Navigation and Obstacle Avoidance Techniques: A Review,” Int. Robotics Autom. J., vol. 2, no. 3, pp. 96–105, 2017, doi: 10.15406/iratj.2017.02.00023.
  3.  R.C. Arkin, Behavior-based robotics. The MIT Press, 1998.
  4.  M. Szuster and Z. Hendzel, Intelligent Optimal Adaptive Control for Mechatronic Systems. Springer, 2018.
  5.  M.J. Giergiel, Z. Hendzel, and W. Żylski, Modeling and control of mobile wheeled robots. PWN, 2013, [in Polish].
  6.  P. Bozek, Y.L. Karavaev, A.A. Ardentov, and K.S. Yefremov, “Neural network control of a wheeled mobile robot based on optimal tra- jectories,” Int. J. Adv. Rob. Syst., vol. 17, no. 2, pp. 1–10, 2020, doi: 10.1177/1729881420916077.
  7.  P. Gierlak and Z. Hendzel, Control of wheeled and manipulation robots. Publishing House Rzeszow Univ. of Technology, 2011, [in Polish].
  8.  B. Kiumarsi, K.G. Vamvoudakis, H. Modares, and F.L. Lewis, “Optimal and Autonomous Control Using Reinforcement Learning: A Survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042–2062, 2018.
  9.  F.L. Lewis, D. Vrabie, and V.L. Syrmos, Optimal control. John Wiley & Sons, 2012.
  10.  K.G. Vamvoudakis and F.L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878–888, 2010.
  11.  F.-Y.Wang, H. Zhang, and D. Liu, “Adaptive Dynamic Programming: An Introduction,” IEEE Comput. Intell. Mag., vol. 4, no.  May, pp. 39–47, 2009.
  12.  A.G. Barto, W. Powell, J. Si, and D.C. Wunsch, Handbook of learning and approximate dynamic programming. Wiley-IEEE Press, 2004.
  13.  D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic Programming with Applications in Optimal Control. Springer, Advances in Industrial Control, 2017.
  14.  A.J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Springer International Publishing, 2017.
  15.  B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems Analysis and Control. Springer-Verlag London, 2007.
  16.  A.W. Starr and Y.C. Ho, “Nonzero-sum differential games,” J. Optim. Theory Appl., vol. 3, no. 3, pp. 184–206, 1969.
  17.  M. Abu-Khalaf, J. Huang, and F.L. Lewis, Nonlinear H2 Hinf Constrained Feedbacka Control. Springer-Verlag London, 2006.
  18.  D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game for discrete-time nonlinear systems via iterative adaptive dynamic programming algorithm,” Neurocomputing, vol. 110, pp.  92–100, 2013.
  19.  C. Qin, H. Zhang, Y. Wang, and Y. Luo, “Neural network-based online Hinf control for discrete-time affine nonlinear system using adaptive dynamic programming,” Neurocomputing, vol. 198, pp.  91–99, 2016.
  20.  D. Liu, H. Li, and D. Wang, “Hinf control of unknown discretetime nonlinear systems with control constraints using adaptive dynamic programming,” in The 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, 2012, pp. 1–6.
  21.  Z. Hendzel and P. Penar, “Zero-Sum Differential Game in Wheeled Mobile Robot Control,” Int. Conf. Mechatron., vol. 934, pp. 151–161, 2017.
  22.  Z. Hendzel, “Optimality in Control for Wheeled Robot,” Adv Intell. Syst. Comput.: Autom. 2018, vol. 743, pp. 431–440, 2018.
  23.  Y. Fu and T. Chai, “Online solution of two-player zero-sum games for continuous-time nonlinear systems with completely unknown dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2577–2587, 2015.
  24.  K.G. Vamvoudakis and F.L. Lewis, “Online solution of nonlinear two-player zero-sum games using synchronous policy iteration,” Int. Robust. Nonlinear Control, vol. 22, pp. 1460–1483, 2012.
  25.  S. Yasini, A. Karimpour, M.-B. Naghibi Sistani, and H. Modares, “Online concurrent reinforcement learning algorithm to solve two-player zero-sum games for partially unknown nonlinear continuous-time systems,” Int. J. Adapt Control Signal Process., vol. 29, no. 4, pp. 473– 493, 2015.
  26.  B. Luo, H.-N. Wu, and T. Huang, “Off-policy reinforcement learning for Hinf control design,” IEEE Trans. Cybern., vol. 45, no. 1, pp. 65–76, 2014.
  27.  H.-N. Wu and B. Luo, “Neural Network Based Online Simultaneous Policy Update Algorithm for Solving the HJI Equation in Nonlinear Hinf Control,” IEEE Trans. Neural Netw. Learn. Syst., vol.  23, no. 12, pp. 1884–1895, 2012.
  28.  Y. Zhu, D. Zhao, and X. Li, “Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game based on online data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 714–725, 2016.
  29.  J. Zhao, M. Gan, and C. Zhang, “Event-triggered Hinf optimal control for continuous-time nonlinear systems using neurodynamic pro- gramming,” Neurocomputing, vol. 360, pp. 14–24, 2019.
  30.  B. Dong, T. An, F. Zhou, S. Wang, Y. Jiang, K. Liu, F. Liu, H. Lu, and Y. Li, “Decentralized Robust Optimal Control for Modular Robot Manipulators Based on Zero-Sum Game with ADP,” in International Symposium on Neural Networks. Springer, 2019, pp. 3–14.
  31.  H. Modares, F.L. Lewis, and Z.-P. Jiang, “Hinf Tracking Control of Completely Unknown Continuous-Time Systems via Off-Policy Reinforcement Learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2550–2562, 2015.
  32.  J.C. Willems, “Dissipative Dynamical Systems. Part I: General Theory,” Arch. Ration. Mech. Anal., vol. 45, pp.  321–351, 1972.
  33.  D.J. Hill and P.J. Moylan, “Dissipative Dynamical Systems: Basic Input-Output and State Properties,” J. Franklin Inst., vol. 305, no.  5, pp. 327–357, 1980.
  34.  A.J. van der Schaft, “L2-gain Analysis of Nonlinear Systems and Nonlinear State Feedback Hinf Control,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 770–784, 1992.
  35.  S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnam, Linear Matrix Inequalities in System and Control Theory. SIAM studies in applied mathematics: 15, 1994.
  36.  S. Yasini, M.B.N. Sistani, and A. Karimpour, “Approximate dynamic programming for two-player zero-sum game related to Hinf control of unknown nonlinear continuous-time systems,” Int. J. Control Autom. Syst., vol. 13, no. 1, pp. 99–109, 2014.
  37.  W. Zylski, Kinematics and dynamics of mobile wheeled robots. Publishing House Rzeszow Univ. of Technology, 1996, [in Polish].
  38.  J. Giergiel and W. Żylski, “Description of motion of a mobile robot by Maggie’s equations,” J. Theor. Appl. Mech., vol. 43, no. 3, pp. 511–521, 2005.
  39.  J. Garca De Jaln, A. Callejo, and A.F. Hidalgo, “Efficient solution of Maggi’s equations,” J. Comput. Nonlinear Dyn., vol. 7, no. 2, 2012, doi: 10.1115/1.4005238.
  40.  A. Kurdila, J.G. Papastavridis, and M.P. Kamat, “Role of Maggi’s equations in computational methods for constrained multibody systems,” J. Guidance Control Dyn., vol. 13, no. 1, pp. 113–120, 1990, doi: 10.2514/3.20524.
  41.  DS1103, Hardware Installation and Configuration. dSpace, 2009.
  42.  ActiveMedia, Pioneer 2DX Operation Manual Peterborough, 1999.
Przejdź do artykułu

Autorzy i Afiliacje

Zenon Hendzel
1
ORCID: ORCID
Paweł Penar
1

  1. Department of Applied Mechanics and Robotics, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In the domain of affective computing different emotional expressions play an important role. To convey the emotional state of human emotions, facial expressions or visual cues are used as an important and primary cue. The facial expressions convey humans affective state more convincingly than any other cues. With the advancement in the deep learning techniques, the convolutional neural network (CNN) can be used to automatically extract the features from the visual cues; however variable sized and biased datasets are a vital challenge to be dealt with as far as implementation of deep models is concerned. Also, the dataset used for training the model plays a significant role in the retrieved results. In this paper, we have proposed a multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on the visual cues. We have used a CNN and pre-trained ResNet-50 model for the transfer learning. VGGFace model’s weights are used to initialize weights of ResNet50 for fine-tuning the model. The proposed system shows significant improvement in test accuracy in affective state recognition compared to the singleton CNN model developed from scratch or transfer learned model. The proposed methodology is validated on The Karolinska Directed Emotional Faces (KDEF) dataset with 77.85% accuracy. The obtained results are promising compared to the existing state of the art methods.
Przejdź do artykułu

Bibliografia

  1.  W. Łosiak and J. Siedlecka, “Recognition of facial expressions of emotions in schizophrenia,” Pol. Psychol. Bull., vol. 44, no. 2, pp. 232– 238, 2013, doi: 10.2478/ppb-2013-0026.
  2.  I.M. Revina and W.R.S. Emmanuel, “A Survey on human face expression recognition techniques,” J. King Saud Univ. Comput. Inf. Sci., vol. 33, no. 6, pp. 619–628, 2021, doi: 10.1016/j.jksuci.2018.09.002.
  3.  I.J. Goodfellow et al., “Challenges in representation learning: A report on three machine learning contests,” Neural Networks, vol. 64, pp. 59‒63, 2015, doi: 10.1016/j.neunet.2014.09.005.
  4.  M. Mohammadpour, H. Khaliliardali, S.M.R. Hashemi, and M.M. AlyanNezhadi. “Facial emotion recognition using deep convolution- al networks,” in Proc. IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, 2017, pp. 0017–0021.
  5.  D.V. Sang, N. Van Dat, and D.P. Thuan, “Facial expression recognition using deep convolutional neural networks,” in Proc. 9th Interna- tional Conference on Knowledge and Systems Engineering (KSE), Hue, 2017, pp. 130‒135.
  6.  C. Pramerdorfer and M. Kampel, “Facial expression recognition using convolutional neural networks: state of the art,” ArXiv, abs/1612.02903.
  7.  J. Yan et al., “Multi-cue fusion for emotion recognition in the wild,” Neurocomputing, vol. 309, pp.  27–35, 2018, doi: 10.1016/j.neu- com.2018.03.068.
  8.  T.A. Rashid, “Convolutional neural networks based method for improving facial expression recognition,” in Advances in Intelligent Systems and Computing, Intelligent Systems Technologies, and Applications 2016. ISTA 2016, J. C. Rodriguez, S. Mitra, S. Thampi, E. S. El-Alfy (Eds)., vol. 530, 2016, Springer, Cham.
  9.  A. Ruiz-Garcia, M. Elshaw, A. Altahhan, and V. Palade, “Deep learning for emotion recognition in faces,” in Artificial Neural Net- works and Machine Learning – ICANN 2016, A.E.P. Villa, P. Masulli, and A.J.P. Rivero (Eds.), vol. 9887, 2016, Switzerland: Springer Verlag, pp. 38‒46, doi: 10.1007/978-3-319-44781-0_5.
  10.  M. Shamim Hossain and Ghulam Muhammad, “Emotion recognition using deep learning approach from audio-visual emotional big data,” Information Fusion, vol. 49, pp. 69‒78, 2019, doi: 10.1016/j.inffus.2018.09.008.
  11.  A.S. Vyas, H.B. Prajapati, and V.K. Dabhi, “Survey on face expression recognition using CNN,” in Proc. 5th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2019, pp. 102‒106.
  12.  M.M. Taghi Zadeh, M. Imani, and B. Majid, “Fast facial emotion recognition using convolutional neural networks and Gabor filters,” in Proc. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, 2019, pp. 577–581.
  13.  A. Renda, M. Barsacchi, A. Bechini, and F. Marcelloni, “Comparing ensemble strategies for deep learning: An application to facial ex- pression recognition,” Expert Syst. Appl., vol. 136, pp. 1‒11, 2019, doi: 10.1016/j.eswa.2019.06.025.
  14.  H. Ding, S. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a deep face recognition net for expression recognition,” in Proc. 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), Washington, USA, 2017, pp. 118‒126. doi: 10.1109/FG.2017.23.
  15.  J. Li et al., “Facial Expression Recognition by Transfer Learning for Small Datasets,” in Security with Intelligent Computing and Big-data Services. SICBS 2018. Advances in Intelligent Systems and Computing, C. N. Yang, S. L. Peng, L. Jain, (Eds.), vol. 895, Springer, Cham, 2018.
  16.  Y. Wang, C. Wang, L. Luo, and Z. Zhou, “Image Classification Based on transfer Learning of Convolutional neural network,” in Proc. Chinese Control Conference (CCC), Guangzhou, China, 2019, pp.  7506‒7510.
  17.  I. Lee, H. Jung, C. H. Ahn, J. Seo, J. Kim, and O. Kwon, “Real-time personalized facial expression recognition system based on deep learning,” in Proc. 2016 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2016, pp. 267‒268.
  18.  J. Chen, X. Liu, P. Tu, and A. Aragones, “Person-specific expression recognition with transfer learning,” in Proc 19th IEEE International Conference on Image Processing, Orlando, USA, 2012, pp. 2621‒2624.
  19.  Y. Fan, J.C.K. Lam, and V.O.K. Li, “Multi-Region Ensemble Convolutional Neural Network for Facial Expression Recognition”, arXiv, 2018, cs. CV, https://arxiv.org/abs/1807.10575v1.
  20.  K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016, pp.  770‒778.
  21.  J. Chmielińska and J. Jakubowski, “Detection of driver fatigue symptoms using transfer learning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 869‒874, 2018, doi: 10.24425/bpas.2018.125934.
  22.  E. Lukasik et al., “Recognition of handwritten Latin characters with diacritics using CNN,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, 2021, article number: e136210, doi: 10.24425/bpasts.2020.136210.
  23.  H. Zhang, A. Jolfaei, and M. Alazab, “A Face Emotion Recognition Method Using Convolutional Neural Network and Image Edge Computing,” IEEE Access, vol. 7, pp. 159081‒159089, 2019, doi: 10.1109/ACCESS.2019.2949741.
  24.  HackerEarth, “Transfer Learning Introduction Tutorials and Notes: Machine Learning,” [Online]. Available: https://www.hackerearth. com/practice/machine-learning/transfer-learning/transfer-learning-intro/tutorial/
  25.  S. Minaee, M. Minaei, and A. Abdolrashidi, “Deep-emotion: Facial expression recognition using attentional convolutional network,” Sensors, vol. 21, no. 9, p. 3046, 2021, doi: 10.3390/s21093046.
  26.  M.J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, “Coding facial expressions with Gabor wavelets,” in Proc. 3rd IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 200‒205, doi: 10.1109/AFGR.1998.670949.
  27.  P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition – Workshops, San Francisco, USA, 2010, pp.  94‒101, doi: 10.1109/CVPRW.2010.5543262.
  28.  M.F.H. Siddiqui and A.Y. Javaid, “A multimodal facial emotion recognition framework through the fusion of speech with visible and infrared images,” Multimodal Technol. Interact., vol. 4, no. 3, p. 46, 2020, doi: 10.3390/mti4030046.
  29.  M.S. Zia, M. Hussain, and M.A.A Jaffar, “Novel spontaneous facial expression recognition using dynamically weighted majority voting based ensemble classifier,” Multimed. Tools Appl., vol. 77, pp. 25537–25567, 2018.
  30.  D. Lundqvist, A. Flykt, and A. Öhman, “The Karolinska Directed Emotional Faces – KDEF,” CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, 1998.
Przejdź do artykułu

Autorzy i Afiliacje

Nagesh Jadhav
1
Rekha Sugandhi
1

  1. MIT ADT University, Pune, Maharashtra, 412201, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper addresses the problem of part of speech (POS) tagging for the Tamil language, which is low resourced and agglutinative. POS tagging is the process of assigning syntactic categories for the words in a sentence. This is the preliminary step for many of the Natural Language Processing (NLP) tasks. For this work, various sequential deep learning models such as recurrent neural network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Bi-directional Long Short-Term Memory (Bi-LSTM) were used at the word level. For evaluating the model, the performance metrics such as precision, recall, F1-score and accuracy were used. Further, a tag set of 32 tags and 225 000 tagged Tamil words was utilized for training. To find the appropriate hidden state, the hidden states were varied as 4, 16, 32 and 64, and the models were trained. The experiments indicated that the increase in hidden state improves the performance of the model. Among all the combinations, Bi-LSTM with 64 hidden states displayed the best accuracy (94%). For Tamil POS tagging, this is the initial attempt to be carried out using a deep learning model.
Przejdź do artykułu

Bibliografia

  1.  R. Rajimol and V.S. Anoop, “A framework for named entity recognition for Malayalam – A Comparison of different deep learning ar- chitectures,” Nat. Lang. Process. Res., vol. 1, pp.  14–22, 2020.
  2.  Y. Liu et al., “Multilingual denoising pre-training for neural machine translation,” Trans. Assoc. Comput. Ling., vol. 8, pp. 726–742, 2020.
  3.  K.S. Kalaivani and S. Kuppuswami, “Exploring the use of syntactic dependency features for document-level sentiment classification,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, pp. 339–347, 2019, doi: 10.24425/bpas.2019.128608.
  4.  S. Anbukkarasi and S. Varadhaganapathy, “Machine Translation (MT) techniques for Indian Languages,” Int. J. Recent Technol. Eng., vol. 8, 86–90, 2019, doi: 10.35940/ijrte.B1015.0782S419.
  5.  E. Brill, “A simple rule-based part of speech tagger,” in Proc. 3rd Conference on Applied Natural Language Processing, Association for Computational Linguistics, 1992, pp. 152–155, doi: 10.3115/974499.974526.
  6.  T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero, and D. Klein, “Painless unsupervised learning with features,” in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2010, pp. 582–590.
  7.  N. Bölücü and B. Can, “Joint PoS tagging and stemming for agglutinative languages,” in Proc. of the International Conference on Com- putational Linguistics and Intelligent Text Processing, 2017, pp. 110–122.
  8.  P. Arulmozhi, T. Pattabhi R.K. Rao and L. Sobha, “A Hybrid POS Tagger for a Relatively Free Word Order Language,” [Online]. Available https://www.academia.edu/23833233/A_Hybrid_POS_Tagger_for_a_Relatively_Free_Word_Order_Language (Accessed: Jan, 10, 2021)
  9.  J. Singh, N. Joshi, and I. Mathur, “Development of Marathi part of speech tagger using statistical approach,” in Proc. of International Conference on Advances in Computing, Communications and Informatics, 2013, pp. 1554–1559.
  10.  M. Ramanathan, V. Chidambaram, and A. Patro, “An Attempt at Multilingual POS Tagging for Tamil,” [Online]. Available http://pages. cs.wisc.edu/~madhurm/CS769_final_report.pdf (Accessed: Jan. 10. 2021).
  11.  N. Bölücü, B. Can, “A Cascaded Unsupervised Model for PoS Tagging,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 20, pp. 1–23, Mar. 2021, doi: 10.1145/3447759.
  12.  S. Adinarayanan and N.S. Ranjaniee, “Part-of speech tagger for sanskrit. A state of art survey,” Int. J. Appl. Eng. Res., vol. 10, pp. 24173– 24178, 2015. doi: 10.37200/IJPR/V23I1/PR190243.
  13.  H. Ali, Unsupervised Parts-of-Speech Tagger for the Bangla language, Department of Computer Science. University of British Colum- bia, 2010. [Online]. Available: https://www.cs.ubc.ca/~carenini/TEACHING/CPSC503-09/FINAL-REPORTS-08/hammad-report1.1.pdf (Accessed: Jan. 10. 2021).
  14.  K. Stratos, M. Collins, and D. Hsu, “Unsupervised part-of-speech tagging with anchor hidden markov models,” Trans. Assoc. Comput. Ling., vol. 4, pp. 245–257, 2016, doi: 10.1162/tacl_a_00096.
  15.  K. Sarkar and V. Gayen, “A trigram HMM-based POS tagger for Indian languages,” in Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), 2013, pp. 205–212.
  16.  M. Banko and R.C. Moore, “Part of speech tagging in context,” in Proc. 20th International Conference on Computational Linguistics, 2004, 556, doi: 10.3115/1220355.1220435.
  17.  Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tagging,” 2015. [Online]. Available: https://arxiv.org/ abs/1508.01991 (Accessed: Jan. 10. 2021).
  18.  M. Thayaparan, S. Ranathunga, and U. Thayasivam, “Graph Based Semi-Supervised Learning for Tamil POS Tagging.” FIRE 2014, [Online]. Available: https://aclanthology.org/L18-1624.pdf (Accessed: Jan. 10. 2021).
  19.  B. Plank, A. Søgaard, and Y. Goldberg, “Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss,” in Proc. 54th Annu. Association for Computational Linguistics, 2016, pp. 412–418.
  20.  M. Rajasekar and A. Udhayakumar, “POS Tagging Using Naive Bayes Algorithm For Tamil,” Int. J. Sci. Eng. Technol. Res., vol. 9, pp. 574–578, Feb. 2020.
  21.  J. Singh, L. Singh Garcha, and S. Singh, “A Survey on Parts of Speech Tagging for Indian Languages,” Int. J. Adv. Res. Comput. Sci. Software Eng., vol. 7, no. 4, Apr. 2017.
  22.  V. Dhanalakshmi, A.M. Kumar, and K.P. Soman, and S. Rajendran, “POS Tagger and Chunker for Tamil Language,” Proceedings of the 8th Tamil Internet Conference, Cologne, Germany, 2009.
  23.  K.K. Akhil, R. Rajimol, and V.S. Anoop, “Parts-of-Speech tagging for Malayalam using deep learning techniques,” Int. J. Inf. Technol., vol. 12, pp. 741–748, 2020, doi: 10.1007/s41870-020-00491-z.
  24.  E. Lukasik et al., “Recognition of handwritten Latin characters with diacritics using CNN,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e136210, 2021, doi: 10.24425/bpasts.2020.136210.
  25.  D. Andor et al., “Globally normalized transition-based neural networks,” in Proc. 54th Annu. Association for Computational Linguistics, Berlin, Germany, 2016, pp. 2442–2452.
  26.  M. Yan et al., “A deep cascade model for multi-document reading comprehension,” in Proc. of The Thirty-Third AAAI Conference on Artificial Intelligence, 2018, pp. 7354–7361.
  27.  P. Wang, Y. Qian, F.K. Soong, L. He, and Z. Hai, “Part-of-speech tagging with bidirectional long short-term memory recurrent neural network,” [Online]. Available: https://arxiv.org/abs/1510.06168v1
  28.  Keras, [Online] Available: https://keras.io/ (Accessed: 30.03.21).
Przejdź do artykułu

Autorzy i Afiliacje

S. Anbukkarasi
1
S. Varadhaganapathy
2

  1. Department of Computer Science and Engineering, Kongu Engineering College, India
  2. Department of Information Technology, Kongu Engineering College, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Numerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending its cost function by a relationship directly inspired by the physical formula. This publication explains the concept of Physics-guided neural networks (PGNN), makes an overview of already proposed solutions in the field and describes possibilities of implementing physics-based loss functions for spatial analysis. Our approach shows that the model predictions are not only optimal but also scientifically consistent with domain specific equations. Furthermore, we present two applications of PGNNs and illustrate their advantages in theory by solving Poisson’s and Burger’s partial differential equations. The proposed formulas describe various real-world processes and have numerous applications in the area of applied mathematics. Eventually, the usage of scientific knowledge contained in the tailored cost functions shows that our methods guarantee physics-consistent results as well as better generalizability of the model compared to classical, artificial neural networks.
Przejdź do artykułu

Bibliografia

  1.  R. Vinuesa et al., “The role of artificial intelligence in achieving the Sustainable Development Goals,” Nat. Commun., vol. 11, no. 1, pp. 1‒10, 2020.
  2.  M. Grochowski, A. Kwasigroch, and A. Mikołajczyk, “Selected technical issues of deep neural networks for image classification purposes,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 363–376, 2019.
  3.  T. Poggio and Q. Liao, “Theory II: Deep learning and optimization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 775–787, 2018.
  4.  A. Lüdeling, M. Walter, E. Kroymann, and P. Adolphs, “Multilevel error annotation in learner corpora,” Proc. Corpus Linguistics Conf., vol. 1, pp. 14–17, 2005.
  5.  A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” Proc. Int. Interdiscipl. PhD Workshop (IIPhDW), 2018, pp. 117–122.
  6.  A.W. Moore and M.S. Lee, “Efficient algorithms for minimizing cross validation error,” Proc. 11th Int’l Conf. Machine Learning, 1994, pp. 190–198.
  7.  J.M. Benitez, J.L. Castro, and I. Requena, “Are artificial neural networks black boxes?,” IEEE Trans. Neural Networks, vol. 8, pp. 1156– 1164, 1997.
  8.  T. Hagendorff, “The ethics of AI ethics: An evaluation of guidelines,” Minds Mach., vol. 30, pp. 99–120, 2020.
  9.  T. Miller, P. Howe, and L. Sonenberg, “Explainable AI: Beware of inmates running the asylum,” Proc. IJCAI Workshop Explainable AI (XAI), 2017, pp. 36–42.
  10.  A. Rai, “Explainable AI: from black box to glass box,” Journal of the Academy of Marketing Science, vol. 48, pp. 137–141, 2020.
  11.  G. Shortley and G. Weller, “Numerical solution of Laplace’s equation,” J. Appl. Phys., vol. 9, no. 1, pp. 334–336, 1938.
  12.  R.C. Mittal and P. Singhal, “Numerical solution of Burger’s equation,” Commun. Numer. Methods Eng., vol. 9, no. 5, pp. 397–406, 1993.
  13.  R. French, “Subcognition and the limits of the Turing test,” Mind, vol. 99, no. 393, pp. 53–65, 1990.
  14.  J. McCarthy, “What is artificial intelligence?,” 1998.
  15.  I. Rojek, M. Macko, D. Mikołajewski, M. Saga, and T. Burczyński, “Modern methods in the field of machine modelling and simulation as a research and practical issue related to industry 4.0,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136717, 2021.
  16.  A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physicsguided neural networks (PGNN): An application in lake temperature modeling,” 2017, [Online], Available: http://arxiv.orgabs/1710.11431.
  17.  J. Willard et al., “Integrating Physics-Based Modeling with Machine Learning: A Survey,” 2020, [Online], Available: http://arxiv.org/abs/2003.04919.
  18.  X. Jia et al., “Physics guided RNNs for modeling dynamical systems: A case study in simulating lake temperature profiles,” Proc. SIAM Int. Conf. Data Mining, pp.  558–566, 2019.
  19.  A. Daw et al., “Physics-Guided Architecture (PGA) of neural networks for quantifying uncertainty in lake temperature modeling,” Proc. SIAM Int. Conf. Data Mining, pp.  532–540, 2020.
  20.  Y. Yang and P. Perdikaris, “Physics-informed deep generative models,” 2018, [Online], Available: http://arxiv.org/abs/1812. 03511.
  21.  R. Singh, V. Shah, B. Pokuri, and S. Sarkar, “Physics-aware deep generative models for creating synthetic microstructures,” 2018, [Online], Available: http://arxiv.org/abs/1811.09669.
  22.  L. Wang, Q. Zhou, and S. Jin, “Physics-guided deep learning for power system state estimation,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 4, pp. 607–615, 2020.
  23.  N. Muralidhar et al., “Physics-guided design and learning of neural networks for predicting drag force on particle suspensions in moving fluids,” 2019, [Online], Available: http://arxiv.org/abs/1911.04240.
  24.  J. Park and J. Park, “Physics-induced graph neural network: An application to wind-farm power estimation,” Energy, vol. 187, p. 115883, 2019.
  25.  R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu, “Towards physics-informed deep learning for turbulent flow prediction,” Proc. 26th SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2020, pp. 1457–1466.
  26.  T. Yang et al., “Evaluation and machine learning improvement of global hydrological model-based flood simulations,” Environ. Res. Lett., vol. 14, no. 11, p. 114027, 2019.
  27.  Y. Zhang et al., “Pgnn: Physics-guided neural network for fourier ptychographic microscopy,” 2019, [Online], Available: http://arxiv.org/ abs/1909.08869.
  28.  M.G. Poirot et al., “Physics-informed deep learning for dualenergy computed tomography image processing,” Sci. Rep., vol. 9, no. 1, 2019.
  29.  F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, “Physics-informed neural networks for cardiac activation mapping,” Front. Phys., vol. 8, p. 42, 2020.
  30.  M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics informed deep learning (part I): Data-driven solutions of nOnlinear partial dif- ferential equations,” 2017, [Online], Available: http://arxiv.org/abs/1711.10561.
  31.  M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics informed deep learning (part II): Data-driven solutions of nOnlinear partial differential equations,” 2017, [Online], Available: http://arxiv.org/abs/1711.10566.
  32.  Z. Fang and J. Zhan, “A physics-informed neural network framework for PDEs on 3D surfaces: Time independent problems,” IEEE Access, vol. 8, pp. 26328–26335, 2019.
  33.  B. Paprocki, A. Pregowska, and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 225–233, 2020.
  34.  M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: opportunities and challenges,” Front. Neurosci., vol.  12, pp. 774, 2018.
  35.  Z. Bing et al., “A survey of robotics control based on learninginspired spiking neural networks,” Front. Neurorob., vol. 12, pp. 35, 2018.
  36.  B. Borzyszkowski, “Neuromorphic Computing in High Energy Physics,” 2020, doi: 10.5281/zenodo.3755310.
  37.  J. George, C. Soci, M. Miscuglio, and V. Sorger, “Symmetry perception with spiking neural networks,” Sci. Rep., vol. 11, no.  1. pp. 1–14, 2021.
  38.  K. Janocha and W.M. Czarnecki, “On loss functions for deep neural networks in classification,” 2017, [Online], Available: http://arxiv. org/abs/1702.05659.
  39.  L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade, Berlin, Heidelberg: Springer 2012, pp. 421–436.
  40.  T. Dockhorn, “A discussion on solving partial differential equations using neural networks,” 2019, [Online], Available: https://arxiv.org/abs/1904.07200.
  41.  A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth, “Occam’s razor,” Inf. Process. Lett., vol. 24, no. 6, pp.  377–380, 1987.
  42.  A. Marreiros, J. Daunizeau, S. Kiebel, and K. Friston, “Population dynamics: variance and the sigmoid activation function,” Neuroimage, vol. 42, no. 1, pp. 147–157, 2008.
  43.  S.K. Kumar, “On weight initialization in deep neural networks.” 2017, [Online]. Available: http://arxiv.org/abs/1704.08863.
  44.  N. Nawi, M. Ransing, and R. Ransing, “An improved learning algorithm based on the Broyden-fletcher-goldfarb-shanno (BFGS) method for back propagation neural networks,” Proc. 6th Int. Conf. Intell. Syst. Design Appl., 2006, vol. 1, pp. 152–157.
  45.  P. Constantin and C. Foias, “Navier-stokes equations,” Chicago: University of Chicago Press, 1988.
  46.  G.A. Anastassiou, “Multivariate hyperbolic tangent neural network approximation,” Comput. Math. Appl., vol. 61, no. 4, pp. 809–821, 2011.
  47.  B. Hanin and D. Rolnick, “How to start training: The effect of initialization and architecture,” Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 571–581.
  48.  R. Ghanem and P. Spanos, “Stochastic finite elements: a spectral approach,” New York: Springer, 1991.
Przejdź do artykułu

Autorzy i Afiliacje

Bartłomiej Borzyszkowski
1
ORCID: ORCID
Karol Damaszke
1
Jakub Romankiewicz
1
Marcin Świniarski
1
Marek Moszyński
1

  1. Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Modern industry requires an increasing level of efficiency in a lightweight design. To achieve these objectives, easy-to-apply numerical tests can help in finding the best method of topological optimization for practical industrial applications. In this paper, several numerical benchmarks are proposed. The numerical benchmarks facilitate qualitative comparison with analytical examples and quantitative comparison with the presented numerical solutions. Moreover, an example of a comparison of two optimization algorithms was performed. That was a commonly used SIMP algorithm and a new version of the CCSA hybrid algorithm of topology optimization. The numerical benchmarks were done for stress constraints and a few material models used in additive manufacturing.
Przejdź do artykułu

Bibliografia

  1.  S.I. Valdez, S. Botello, M.A. Ochoa, J.L. Marroquín, and V. Cardoso, “Topology Optimization Benchmarks in 2D: Results for Min- imum Compliance and Minimum Volume in Planar Stress Problems,” Arch. Comput. Methods Eng., vol. 24, no. 4, pp. 803–839, Nov. 2017, doi: 10.1007/s11831-016-9190-3.
  2.  M. Fanni, M. Shabara, and M. Alkalla, “A Comparison between Different Topology Optimization Methods,” Bull. Fac. Eng. Mansoura Univ., vol. 38, no. 4, pp. 13–24, Jul. 2020, doi: 10.21608/bfemu.2020.103788.
  3.  S. Rojas-Labanda and M. Stolpe, “Benchmarking optimization solvers for structural topology optimization,” Struct. Multidiscip. Optim., vol. 52, no. 3, pp. 527–547, Sep. 2015, doi: 10.1007/s00158-015-1250-z.
  4.  D. Yang, H. Liu,W. Zhang, and S. Li, “Stress-constrained topology optimization based on maximum stress measures,” Comput. Struct., vol. 198, pp. 23–39, Mar. 2018, doi: 10.1016/j.compstruc.2018.01.008.
  5.  D. Pasini, A. Moussa, and A. Rahimizadeh, “Stress-Constrained Topology Optimization for Lattice Materials,” in Encyclopedia of Con- tinuum Mechanics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2018, pp. 1–19.
  6.  E. Lee, K.A. James, and J.R.R.A. Martins, “Stress-constrained topology optimization with design-dependent loading,” Struct. Multidis- cip. Optim., vol. 46, no. 5, pp. 647–661, Nov. 2012, doi: 10.1007/s00158-012-0780-x.
  7.  L. Xia, L. Zhang, Q. Xia, and T. Shi, “Stress-based topology optimization using bi-directional evolutionary struc- tural optimization method,” Comput. Methods Appl. Mech. Eng., vol. 333, pp. 356 –370, May 2018, doi: 10.1016/j.cma. 2018.01.035.
  8.  S. Bulman, J. Sienz, and E. Hinton, “Comparisons between algorithms for structural topology optimization using a series of benchmark studies,” Comput. Struct., vol. 79, no. 12, pp. 1203–1218, May 2001, doi: 10.1016/S0045-7949(01)00012-8.
  9.  G.I.N. Rozvany, “Exact analytical solutions for some popular benchmark problems in topology optimization,” Struct. Optim., vol. 15, no. 1, pp. 42–48, Feb. 1998, doi: 10.1007/BF01197436.
  10.  G.I.N. Rozvany, “A critical review of established methods of structural topology optimization,” Struct. Multidiscip. Optim., vol. 37, no. 3, pp. 217–237, Jan. 2009, doi: 10.1007/s00158-007-0217-0.
  11.  T. Lewiński and G.I.N. Rozvany, “Analytical benchmarks for topological optimization IV: Square-shaped line support,” Struct. Multidiscip. Optim., vol. 36, no. 2, pp. 143–158, Aug. 2008, doi: 10.1007/s00158-007-0205-4.
  12.  A. Verbart, M. Langelaar, and F. van Keulen, “Damage approach: A new method for topology optimization with local stress constraints,” Struct. Multidiscip. Optim., vol. 53, no. 5, pp. 1081–1098, May 2016, doi: 10.1007/s00158-015-1318-9.
  13.  S. Goo, S. Wang, J. Hyun, and J. Jung, “Topology optimization of thin plate structures with bending stress constraints,” Comput. Struct., vol. 175, pp. 134–143, Oct. 2016, doi: 10.1016/ j.compstruc.2016.07.006.
  14.  E. Holmberg, B. Torstenfelt, and A. Klarbring, “Stress constrained topology optimization,” Struct. Multidiscip. Optim., vol. 48, no. 1, pp. 33–47, Jul. 2013, doi: 10.1007/s00158-012-0880-7.
  15.  E. Holmberg, Topology optimization considering stress, fatigue and load uncertainties. Linköping University Electronic Press, 2015.
  16.  L. He, M. Gilbert, T. Johnson, and T. Pritchard, “Conceptual design of AM components using layout and geometry optimization,” Comput. Math. with Appl., vol. 78, no. 7, pp. 2308–2324, Oct. 2019, doi: 10.1016/j.camwa.2018.07.012.
  17.  M. Mrzygłód, “Multi-constrained topology optimization using constant criterion surface algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 2, pp. 229–236, Oct. 2012, doi: 10.2478/v10175-012-0030-9.
  18.  M. Zhou and G.I.N. Rozvany, “The COC algorithm, Part II: Topological, geometrical and generalized shape optimization,” Comput. Methods Appl. Mech. Eng., vol. 89, no. 1–3, pp. 309–336, Aug. 1991, doi: 10.1016/0045-7825(91)90046-9.
  19.  M.P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
  20.  M.W. Mrzygłód, “Alternative quasi-optimal solutions in evolutionary topology optimization,” in AIP Conference Proceedings, 2018, vol. 1922, p. 020007-1‒020007-7, doi: 10.1063/1.5019034.
  21.  G. Fiuk and M.W. Mrzygłód, “Topology optimization of structures with stress and additive manufacturing constraints,” J. Theor. Appl. Mech., vol. 58, no. 2, pp. 459–468, Apr. 2020, doi: 10.15632/jtam-pl/118899.
  22.  M. Mrzygłód and T. Kuczek, “Uniform crashworthiness optimization of car body for high-speed trains,” Struct. Multidiscip. Optim., vol. 49, no. 2, pp. 327–336, Feb. 2014, doi: 10.1007/s00158-013-0972-z.
  23.  P. Duda and M.W. Mrzygłód, “Shape and operation optimization of a thick-walled power boiler component,” in MATEC Web of Confer- ences, Nov. 2018, vol. 240, p. 05006, doi: 10.1051/matecconf/201824005006.
  24.  T. Lewiński and G.I.N. Rozvany, “Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains,” Struct. Multidiscip. Optim., vol. 35, no. 2, pp. 165–174, Feb. 2008, doi: 10.1007/s00158-007-0157-8.
  25.  N. Olhoff, J. Rasmussen, and M.P. Bendsøe, “On CADIntegrated Structural Topology and Design Optimization,” in Evaluation of Global Bearing Capacities of Structures, Vienna: Springer Vienna, 1993, pp. 255–280.
  26.  A.G.M. Michell, “LVIII. The limits of economy of material in frame-structures,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 8, no. 47, pp. 589–597, 1904, doi: 10.1080/14786440409463229.
Przejdź do artykułu

Autorzy i Afiliacje

Grzegorz Fiuk
1
ORCID: ORCID
Mirosław W. Mrzygłód
1
ORCID: ORCID

  1. Opole University of Technology, Faculty of Mechanical Engineering, ul. Mikołajczyka 5, 45-271 Opole, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents an analysis of the influence of the shape of the rigid body pressed into the micro-periodic composite half-space on the examples of two punch shapes – parabolic and rectangular. The presented material is a layered body that consists of infinitely many thin alternately arranged homogenous layers. Layers of the presented composite are oblique to the boundary surface. Two cases of punch tip shape are examined – parabolic and rectangular. The presented problem has been formulated within the framework of a homogenized model with microlocal parameters and solved using the elastic potentials method and averaged boundary condition. Fourier integral transform method has been used to obtain the solution and the inverse integrals have been calculated numerically. Solutions in terms of contact pressure and maximum pressure characteristics were shown in the form of graphs.
Przejdź do artykułu

Bibliografia

  1.  G.M.L. Gladwell, Contact Problems in the Classical Theory of Elasticity. Springer Netherlands, 1980. [Online]. Available: https://books. google.pl/books?id=Y3-Ju0WQ6msC.
  2.  J.R. Barber, “Hertzian Contact”, in Solid Mechanics and its Applications, vol. 250, Springer Verlag, 2018, pp. 29‒41, doi: 10.1007/978- 3-319-70939-0_3.
  3.  A. Sackfield and D.A. Hills, “Some useful results in the classical hertz contact problem”, J. Strain Anal. Eng. Des., vol.  18, no. 2, pp.101–105, 1983, doi: 10.1243/03093247V182101.
  4.  S.J. Chidlow and M. Teodorescu, “Two-dimensional contact mechanics problems involving inhomogeneously elastic solids split into three distinct layers”, Int. J. Eng. Sci., vol. 70, pp. 102–123, 2013, doi: 10.1016/j.ijengsci.2013.05.004.
  5.  D. Pączka, “Elastic contact problem with Coulomb friction and normal compliance in Orlicz spaces”, Nonlinear Anal. Real World Appl., vol. 45, pp. 97–115, Feb. 2019, doi: 10.1016/J.NONRWA.2018.06.009.
  6.  C. Peijian, C. Shaohua, and P. Juan, “Sliding Contact Between a Cylindrical Punch and a Graded Half-Plane With an Arbitrary Gradient Direction”, J. Appl. Mech., vol. 82, no. 4, pp.  41008–41009, Apr. 2015, doi: 10.1115/1.4029781.
  7.  K.B. Yilmaz, I. Comez, B. Yildirim, M.A. Güler, and S. El-Borgi, “Frictional receding contact problem for a graded bilayer system in- dented by a rigid punch”, Int. J. Mech. Sci., vol. 141, pp. 127–142, 2018, doi: 10.1016/j.ijmecsci.2018.03.041.
  8.  D.M. Perkowski, R. Kulchytsky-Zhyhailo, and W. Kołodziejczyk, “On axisymmetric heat conduction problem for multilayer graded coated half-space”, J. Theor. Appl. Mech., vol. 56, no. 1, pp.  147–156, 2018, doi: 10.15632/jtam-pl.56.1.147.
  9.  O. Arslan and S. Dag, “Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile”, Int. J. Mech. Sci., vol. 135, pp. 541–554, 2018, doi: 10.1016/j.ijmecsci.2017.12.017.
  10.  T.-J. Liu, Y.-S. Wang, and Y.-M. Xing, “The axisymmetric partial slip contact problem of a graded coating”, Meccanica, vol.  47, no. 7, pp. 1673–1693, 2012, doi: 10.1007/s11012-012-9547-0.
  11.  M. Kot, J. Lackner, and L. Major, “Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 3, pp. 343–355, 2011, doi: 10.2478/v10175-011-0042-x.
  12.  R. Kulchytsky-Zhyhailo, S.J. Matysiak, and D.M. Perkowski, “On displacements and stresses in a semi-infinite laminated layer: Com- parative results”, Meccanica, vol. 42, no. 2, pp.  117–126, Mar. 2007, doi: 10.1007/s11012-006-9026-6.
  13.  D.M. Perkowski, S.J. Matysiak, and R. Kulchytsky-Zhyhailo, “On contact problem of an elastic laminated half-plane with a boundary normal to layering”, Compos. Sci. Technol., vol. 67, no. 13, pp. 2683–2690, Oct. 2007, doi: 10.1016/j.compscitech.2007.02.013.
  14.  M.-J. Pindera and M.S. Lane, “Frictionless Contact of Layered Half-Planes, Part II: Numerical Results”, J. Appl. Mech., vol. 60, no. 3, pp. 640–645, 1993, doi: 10.1115/1.2900852.
  15.  C. Woźniak, “A nonstandard method of modelling of thermoelastic periodic composites”, Int. J. Eng. Sci., vol. 25, no.  5, pp. 483–498, Jan. 1987, doi: 10.1016/0020-7225%2887%2990102-9.
  16.  S. Timoshenko, “Goodier. JN, Theory of Elasticity”, New. York McGraw—Hil1, vol. 970, no. 4, pp. 279–291, 1970.
  17.  S.J. Matysiak and C.Z. Woźniak, “Micromorphic effects in a modelling of periodic multilayered elastic composites”, Int. J. Eng. Sci., vol. 25, no. 5, pp. 549–559, Jan. 1987, doi: 10.1016/0020-7225%2887%2990106-6.
  18.  A. Kaczyński and S.J. Matysiak, “Plane contact problems for a periodic two-layered elastic composite”, Ingenieur-Archiv, vol. 58, no. 2, pp. 137–147, Mar. 1988, doi: 10.1007/BF00536233.
  19.  I.N. Sneddon, “Integral transform methods”, in Methods of analysis and solutions of crack problems: Recent developments in fracture mechanics Theory and methods of solving crack problems, G.C. Sih, Ed. Dordrecht: Springer Netherlands, 1973, pp. 315–367, doi: 10.1007/978-94-017-2260-5_6.
  20.  R. Kulchytsky-Zhyhailo and W. Kolodziejczyk, “On axisymmetrical contact problem of pressure of a rigid sphere into a periodically two-layered semi-space”, Int. J. Mech. Sci., vol. 49, no. 6, pp. 704–711 2007, doi: 10.1016/j.ijmecsci.2006.10.007.
  21.  P. Sebestianiuk, D.M. Perkowski, and R. Kulchytsky- Zhyhailo, “On Contact problem for the microperiodic composite half-plane with slant layering”, Int. J. Mech. Sci., vol. 182, p. 1057342020, doi: 10.1016/j.ijmecsci.2020.105734.
  22.  P. Sebestianiuk, D.M. Perkowski, and R. Kulchytsky-Zhyhailo, “On stress analysis of load for microperiodic composite half-plane with slant lamination”, Meccanica, vol. 54, pp. 573–593 2019, doi: 10.1007/s11012-019-00970-z.
  23.  I.Y. Shtaerman, “Contact Problems of the Theory of Elasticity (FTD-MT-24-61-70)”, vol. 55, no. 6, pp. 887–901, 1970.
  24.  M. Sadowsky, “Zweidimensionale Probleme der Elastizitätstheorie”, ZAMM – J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech., vol. 8, no. 2, pp. 107–121, 1928, doi: 10.1002/zamm.19280080203.
  25.  L.A. Galin, Contact Problems in the Theory of Elasticity. Department of Mathematics, School of Physical Sciences and Applied Mathe- matics, North Carolina State College, 1961. [Online]. Available: https://books.google.pl/books?id=9F-4QgAACAAJ.
  26.  I.S. Gradshteyn, I.M. Ryzhik, and R.H. Romer, “Tables of Integrals, Series, and Products”, Am. J. Phys., vol. 56, p. 958, 1988, doi: 10.1119/1.15756.
Przejdź do artykułu

Autorzy i Afiliacje

Piotr Sebestianiuk
1
Dariusz M. Perkowski
1
Roman Kulchytsky-Zhyhailo
1

  1. Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In the paper, the numerical method of solving the one-dimensional subdiffusion equation with the source term is presented. In the approach used, the key role is played by transforming of the partial differential equation into an equivalent integro-differential equation. As a result of the discretization of the integro-differential equation obtained an implicit numerical scheme which is the generalized Crank-Nicolson method. The implicit numerical schemes based on the finite difference method, such as the Carnk-Nicolson method or the Laasonen method, as a rule are unconditionally stable, which is their undoubted advantage. The discretization of the integro-differential equation is performed in two stages. First, the left-sided Riemann-Liouville integrals are approximated in such a way that the integrands are linear functions between successive grid nodes with respect to the time variable. This allows us to find the discrete values of the integral kernel of the left-sided Riemann-Liouville integral and assign them to the appropriate nodes. In the second step, second order derivative with respect to the spatial variable is approximated by the difference quotient. The obtained numerical scheme is verified on three examples for which closed analytical solutions are known.
Przejdź do artykułu

Bibliografia

  1.  T. Kosztołowicz, K. Dworecki, and S. Mrówczyński, “How to measure subdiffusion parameters,” Phys. Rev. Lett., vol. 94, p.  170602, 2005, doi: 10.1016/j.tins.2004.10.007.
  2.  T. Kosztołowicz, K. Dworecki, and S. Mrówczyński, “Measuring subdiffusion parameters,” Phys. Rev. E, vol. 71, p.  041105, 2005.
  3.  E. Weeks, J. Urbach, and L. Swinney, “Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example,” Physica D, vol. 97, pp. 291–310, 1996.
  4.  T. Solomon, E. Weeks, and H. Swinney, “Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow,” Phys. Rev. Lett., vol. 71, pp. 3975–3979, 1993.
  5.  N.E. Humphries, et al., “Environmental context explains Lévy and Brownian movement patterns of marine predators,” Nature, vol. 465, pp. 1066–1069, 2010.
  6.  U. Siedlecka, “Heat conduction in a finite medium using the fractional single-phase-lag model,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, pp. 402–407, 2019.
  7.  R. Metzler and J. Klafter, “The random walk:s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep., vol. 339, pp. 1–77, 2000.
  8.  R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A: Math. Gen., vol. 37, pp. 161–208, 2004.
  9.  M. Aslefallah, S. Abbasbandy, and E. Shivanian, “Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method,” Eng. Anal. Boundary Elem., vol. 107, pp. 198–207, 2019.
  10.  Y. Li and D. Wang, “Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term,” Int. J. Comput. Math., vol. 94, pp. 821–840, 2017.
  11.  X. Cao, X. Cao, and L. Wen, “The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term,” J. Comput. Appl. Math., vol. 318, pp. 199–210, 2017.
  12.  A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006.
  13.  E.D. Rainville, Special Functions. New York: The Macmillan Company, 1960.
  14.  J.-L. Liu and H.MSrivastava, “Classes of meromorphically multivalent functions associated with the generalized hypergeometric function,” Math. Comput. Modell., vol. 39, pp. 21–34, 2004.
  15.  Y.L. Luke, “Inequalities for generalized hypergeometric functions,” J. Approximation Theory, vol. 5, pp. 41–65, 1972.
  16.  M. Włodarczyk and A. Zawadzki, “The application of hypergeometric functions to computing fractional order derivatives of sinusoidal functions,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, pp. 243–248, 2016.
  17.  M. Błasik, “A generalized Crank-Nicolson method for the solution of the subdiffusion equation,” 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp.  726–729, 2018.
  18.  M. Błasik, “Zagadnienie stefana niecałkowitego rzędu,” Ph.D. dissertation, Politechnika Częstochowska, 2013.
  19.  M. Błasik and M. Klimek, “Numerical solution of the one phase 1d fractional stefan problem using the front fixing method,” Math. Methods Appl. Sci., vol. 38, no. 15, pp. 3214–3228, 2015.
  20.  K. Diethelm, The Analysis of Fractional Differential Equations. Berlin: Springer-Verlag, 2010.
Przejdź do artykułu

Autorzy i Afiliacje

Marek Błasik
1

  1. Institute of Mathematics, Czestochowa University of Technology, al. Armii Krajowej 21, 42-201 Czestochowa, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper presents the design of a versatile mechanism that can enable new directions in amphibious, all-terrain locomotion. The simple, passive, flapped-paddle can be integrated with several structures that are well-suited for locomotion in terrestrial applications. The flapped-paddle overcomes a serious limitation of the conventional flipper where the net lateral forces generated during oscillatory motion in aquatic environments averages out to zero. The flapped-paddle and its mounting, collectively, rests in natural positions in the aquatic environment so as to maximize hydrodynamic force utilization and consequently the propulsive efficiency. The simplicity of the design enabled us to develop a simulation model that concurs well with experimental results. The results reported in the paper are based on integrating the flapped-paddle with the curved leg of the RHex hexapod robot.
Przejdź do artykułu

Bibliografia

  1.  A. Crespi, K. Karakasiliotis, A. Guignard, and A.J. Ijspeert, “Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits,” IEEE Trans. Rob., vol. 29, no. 2, pp. 308‒320, 2013.
  2.  M. Gad-El-Hak, “Coherent structures and flow control: genesis and prospect,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 411‒444, 2019.
  3.  A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen, “From swimming to walking with a salamander robot driven by a spinal cord model,” Science, vol. 315, no. 5817, pp. 1416‒1420, 2007.
  4.  E. Natarajan, K.Y. Chia, A.A.M. Faudzi, W.H. Lim, Ch.K. Ang, and A. Jafaari, “Bio Inspired Salamander Robot with Pneu-Net Soft ac- tuators-Design and Walking Gait Analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3, 2021, Article number: e137055, doi: 10.24425/ bpasts.2021.137055.
  5.  K. Karakasiliotis and A.J. Ijspeert, “Analysis of the terrestrial locomotion of a salamander robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis 2009, pp. 5015‒5020.
  6.  P. Liljebäck, Ø. Stavdahl, K.Y. Pettersen, and J.T. Gravdahl, “Mamba-A waterproof snake robot with tactile sensing,” in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, US, 2014, pp. 294‒301.
  7.  S. Hirose and H. Yamada, “Snake-like robots machine design of biologically inspired robots,” IEEE Rob. Autom. Mag., vol. 3, 2009.
  8.  J. Yu, R. Ding, Q. Yang, M. Tan, and J. Zhang, “Amphibious Pattern Design of a Robotic Fish with Wheel-propeller-fin Mechanisms,” J. Field Rob., vol. 30, no. 5, pp. 702‒716, 2013.
  9.  J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, and J. Zhang, “On a bio-inspired amphibious robot capable of multimodal motion,” IEEE/ ASME Trans. Mechatron., vol. 17, no. 5, pp. 847‒856, 2011.
  10.  T. Paschal, M.A. Bell, J. Sperry, S. Sieniewicz, R.J. Wood, and J.C. Weaver, “Design, fabrication, and characterization of an untethered amphibious sea urchin-inspired robot,” IEEE Rob. Autom. Lett., vol. 4, no. 4, pp. 3348‒3354, 2019.
  11.  V. Kaznov and M. Seeman, “Outdoor navigation with a spherical amphibious robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan 2010, pp. 5113‒5118.
  12.  Y. Shen, Y. Sun, H. Pu and S. Ma, “Experimental verification of the oscillating paddling gait for an ePaddle-EGM amphibious locomotion mechanism,” IEEE Rob. Autom. Lett., vol. 2, no. 4, pp.  2322‒2327, 2017.
  13.  U. Saranli, M. Buehler, and D.E. Koditschek, “Design, modeling and preliminary control of a compliant hexapod robot,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco,CA, 2000, vol.3, pp. 2589‒2596.
  14.  U. Saranli, M. Buehler, and D.E. Koditschek, “RHex: A simple and highly mobile hexapod robot,” Int. J. Rob. Res., vol.  20, no. 7, pp. 616‒631, 2001.
  15.  G. Dudek et al., “Aqua: An amphibious autonomous robot,” Computer, vol. 40, no. 1, pp. 46‒53, 2007.
  16.  Ch. Georgiades, M. Nahon, and M. Buehler, “Simulation of an underwater hexapod robot,” Ocean Eng., vol. 36, no. 1, pp. 39‒47, 2009.
  17.  X. Liang et al., “The amphihex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism,” in Proceed- ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 2012, pp. 3667‒3672.
  18.  S. Zhang, X. Liang, L. Xu, and M. Xu, “Initial development of a novel amphibious robot with transformable fin-leg composite propulsion mechanisms,” J. Bionic Eng., vol. 10, no. 4, pp.434‒445, 2013.
  19.  S. Zhang, Y. Zhou, M. Xu, X. Liang, J. Liu, and J. Yang, “AmphiHex-I: locomotory performance in amphibious environments with specially designed transformable flipper legs,” IEEE/ASME Trans. Mechatron., vol. 21, no. 3, p. 1720‒1731, 2015.
  20.  P. Burzyński, Poland, FLHex: A Flapped-Paddle Hexapod, (Aug. 01, 2021). [Online Video]. Available: https://www.youtube.com/ watch?v=Ux1AlOFUUco (Accessed: Aug. 2, 2021).
  21.  A. Simha, R. Gkliva, Ü. Kotta, and M. Kruusmaa, “A Flapped Paddle-Fin for Improving Underwater Propulsive Efficiency of Oscillatory Actuation,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp.  3176‒3181, 2020.
  22.  K.E. Crandell and B.W. Tobalske, “Kinematics and aerodynamics of avian upstrokes during slow flight,” J. Exp. Biol., vol. 218, no. 16, pp. 2518‒2527, 2015.
  23.  W. Yang and B. Song, “Experimental investigation of aerodynamics of feather-covered flapping wing,” Appl. Bionics Biomech., vol. 2017, 2017, Article ID: 3019640. doi: 10.1155/2017/3019640.
  24.  B.B. Dey, S. Manjanna, and Dudek G., “Ninja legs: Amphibious one degree of freedom robotic legs,” in Proceedings of the 2013 IEEE/ RSJ International Conference on Intelligent Robots and Systems, Tokio, Japan, 2013, pp. 5622‒5628.
  25.  S.B.A. Kashem, S. Jawed, A. Jubaer, and Q. Uvais, “Design and Implementation of a Quadruped Amphibious Robot Using Duck Feet,” Robotics, vol. 8, no. 3, p. 77, 2019, doi: 10.3390/robotics8030077.
  26.  B. Kwak and J. Bae, “Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming,” Bioinspir. Biomim., vol. 12, no. 3, p. 036014, 2017, doi: 10.1088/1748-3190/aa6c7a.
  27.  S.B. Behbahani and X. Tan, “Design and modeling of flexible passive rowing joint for robotic fish pectoral fins,” IEEE Trans. Rob., vol. 32, no. 5, pp. 1119‒1132, 2016.
  28.  Ch.J. Esposito, J.L. Tangorra, B.E. Flammang, and G.V. Lauder, “A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance,” J. Exp. Biol., vol. 215, no. 1, pp. 56‒67, 2012.
  29.  G.V. Lauder, “Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns,” Am. Zool., vol. 40, no. 1, pp. 101‒122, 2000.
  30.  S.C. Licht, M. Wibawa, F.S. Hover, and M.S. Triantafyllou, “Towards amphibious robots: Asymmetric flapping foil motion underwater produces large thrust efficiently,” Technical Raport, Massachusetts Institute of Technology. Sea Grant College Program, 2009.
  31.  Ch. Meurer, A. Simha, Ü. Kotta, and M. Kruusmaa, “Nonlinear Orientation Controller for a Compliant Robotic Fish Based on Asymmetric Actuation,” in Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019, pp. 4688‒4694.
  32.  G.V. Lauder and E.D. Tytell, “Hydrodynamics of undulatory propulsion,” Fish Physiol., vol. 23, pp. 425‒468, 2005.
  33.  M. Bozkurttas, J. Tangorra, G. Lauder, and R. Mittal, “Understanding the hydrodynamics of swimming: From fish fins to flexible pro- pulsors for autonomous underwater vehicles,” Adv. Sci. Technol., vol.58, pp. 193‒202, 2008.
  34.  N. Martin, Ch. Roh, S. Idrees, and M. Gharib, “To flap or not to flap: comparison between flapping and clapping propulsions,” J. Fluid Mech., vol.822, p. R5, 2017, doi: 10.1017/jfm.2017.252.
  35.  M. Sfakiotakis, D.M. Lane, and J.B.C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE J. Oceanic Eng., vol. 24, no. 2, pp. 237‒252, 1999.
  36.  R. Gkliva, M. Sfakiotakis, and M. Kruusmaa, “Development and experimental assessment of a flexible robot fin,” in Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 208‒213.
Przejdź do artykułu

Autorzy i Afiliacje

Piotr Burzynski
1
Ashutosh Simha
2
Ülle Kotta
2
Ewa Pawluszewicz
1
Shivakumar Sastry
3

  1. Bialystok University of Technology, Department of Robotics and Mechatronics, ul. Wiejska 45C, 15-351 Bialystok, Poland
  2. School of Information Technologies, Department of Software Science, Tallinn University of Technology, 12618 Tallinn, Estonia
  3. University of Akron, Department of Electrical and Computer Engineering, Akron, Ohio 44325, USA
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In the article the results of simulation and experimental studies of the movement of a four-wheeled mobile platform, taking into account wheel slip have been presented. The simulation results have been based on the dynamics of the four-wheel mobile platform. The dynamic model of the system motion takes into account the relationship between the active and passive forces accompanying the platform motion, especially during wheel slip. The formulated initial problem describing the motion of the system has been solved by the Runge-Kutta method of the fourth order. The proposed computational model including the platform dynamics model has been verified in experimental studies using the LEO Rover robot. The motion parameters obtained on the basis of the adopted computational model in the form of trajectories, velocities and accelerations have been compared with the results of experimental tests, and the results of this comparison have been included in the paper. The proposed computational model can be useful in various situations, e.g., real-time control, where models with a high degree of complexity are useless due to the computation time. The simulation results obtained on the basis of the proposed model are sufficiently compatible with the results of experimental tests of motion parameters obtained for the selected type of mobile robot.
Przejdź do artykułu

Bibliografia

  1.  A. Jaskot, “Modelowanie i analiza ruchu platform mobilnych z uwzględnieniem poślizgu,” Ph.D. dissertation, Czestochowa University of Technology, 2021.
  2.  Z. Lozia, “Modele symulacyjne ruchu i dynamiki dwóch pojazdów uprzywilejowanych,” Czaspismo Techniczne Mechanika, vol. Z.8, pp. 19–34, 2012.
  3.  S. Aguilera-Marinovic, M. Torres-Torriti, and F. Auat-Cheein, “General dynamic model for skid-steer mobile manipulators with wheel – ground interactions,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 433–444, Feb. 2017, doi: 10.1109/tmech.2016.2601308.
  4.  A. Mandow et al., “Experimental kinematics for wheeled skid-steer mobile robots,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Oct. 2007, doi: 10.1109/iros.2007.4399139.
  5.  D. Pazderski, “Waypoint following for differentially driven wheeled robots with limited velocity perturbations,” Journal of Intelligent & Robotic Systems, vol. 85, no. 3‒4, pp. 553–575, Jun. 2016, doi: 10.1007/s10846-016-0391-7.
  6.  Y. Abdelgabar, J. Lee, and S. Okamoto, “Motion control of a three active wheeled mobile robot and collision-free human following nav- igation in outdoor environment,” Proc. Int. Multi- Conf. Eng. Comput. Sci., vol. 1, p. 4, 2016.
  7.  L. Xin, Q. Wang, J. She, and Y. Li, “Robust adaptive tracking control of wheeled mobile robot,” Rob. Auton. Syst., vol. 78, pp. 36–48, 2016, doi: 10.1016/j.robot.2016.01.002.
  8.  W. Kowalczyk and K. Kozłowski, “Trajectory tracking and collision avoidance for the formation of two-wheeled mobile robots,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 5, pp. 915–924, 2019, doi: 10.24425/bpas.2019.128652.
  9.  X. Feng and C.Wang, “Robust Adaptive Terminal Sliding Mode Control of an Omnidirectional Mobile Robot for Aircraft Skin Inspection,” Int. J. Control Autom. Syst., vol. 19, no. 2, pp. 1078–1088, 2021, doi: 10.1007/s12555-020-0026-4.
  10.  M. Nitulescu, “Solutions for Modeling and Control in Mobile Robotics,” J. Control Eng. Appl. Inf., vol. 9, no. 3;4, pp. 43–50, 2007.
  11.  D. Cekus, R. Gnatowska, and P. Kwiatoń, “Impact of Wind on the Movement of the Load Carried by Rotary Crane,” Appl. Sci., vol. 9, no. 19, p. 22, 2019, doi: 10.3390/app9183842.
  12.  A. Jaskot, B. Posiadała, and S. Śpiewak, “Dynamics Modelling of the Four-Wheeled Mobile Platform,” Mech. Res. Commun., vol.  83, pp. 58–64, 2017, doi: 10.1016/j.mechrescom. 2017.05.007.
  13.  A. Jaskot, B. Posiadała, and S. Śpiewak, “Dynamics Model of the Mobile Platform for its Various Configurations,” Procedia Eng., vol. 177, pp. 162–167, 2017, doi: 10.1016/j.proeng.2017.02.211.
  14.  A. Jaskot and B. Posiadała, “Dynamics of the mobile platform with four wheel drive,” MATEC Web of Conferences, vol. 254, p. 8, 2019, doi: 10.1051/matecconf/201925403006.
  15.  N. Sarkar, X. Yun, and V. Kumar, “Control of Mechanical Systems With Rolling Constraints: Application to Dynamic Control of Mobile Robots,” Int. J. Rob. Res., vol. 13, no. 1, pp. 55–69, 1994, doi: 10.1177/027836499401300104.
  16.  M. Eghtesad and D. Necsulescu, “Study of the internal dynamics of an autonomous mobile robot,” Rob. Auton. Syst., vol. 54, no. 4, pp. 342–349, 2006, doi: 10.1016/j.robot.2006.01.001.
  17.  “Technical specification.” [Online]. Available: http://pl.kwapil.com/downloads/maxon-ec-motor.pdf (Accessed 2017-07-24).
  18.  “Leo rover specification.” [Online]. Available: https://www.leorover.tech/the-rover (Accessed 2021-04-21).
Przejdź do artykułu

Autorzy i Afiliacje

Anna Jaskot
1
ORCID: ORCID
Bogdan Posiadała
2

  1. Czestochowa University of Technology, Faculty of Civil Engineering, ul. Akademicka 3, 42-201 Częstochowa, Poland
  2. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, ul. Dąbrowskiego 73, 42-201 Częstochowa, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The following paper presents wind tunnel investigation of aerodynamic characteristics of hovering propellers. This propulsion system may be applied on a lightweight Quad Plane VTOL (Vertical Take-Off and Landing) UAV (Unmanned Aerial Vehicle). A Quad Plane is a configuration consisting of a quadcopter design combined with a conventional twin-boom airplane. This kind of design should therefore incorporate the advantages of both types of vehicles in terms of agility and long endurance. However, those benefits may come with a cost of worse performance and higher energy consumption. The characteristics of a fixed-wing aircraft and propellers in axial inflow are well documented, less attention is put to non-axial flow cases. VTOL propellers of a hybrid UAV are subject to a multitude of conditions – various inflow speeds and angles, changing RPMs, interference between propellers and between nearby aerodynamic structures. The tested system presented in this article consists of four electric motors with two coaxial pairs of propellers mounted on one of the fuselage beams. Such a configuration is often chosen by designers of small and medium hybrid UAVs. There is a need for studies of clean, efficient ways of transporting, and this article can aid future designers of a new type of electric UAVs.
Przejdź do artykułu

Bibliografia

  1.  A.M. Kamal and A. Ramirez-Serrano, “A. Design methodology for hybrid (VTOL + Fixed Wing) unmanned aerial vehicles,” Aeronaut. Aerosp Open Access J., vol. 2, no. 3, pp. 165–176, 2018, doi: 10.15406/aaoaj.2018.02.00047.
  2.  A.S. Saeed, A.B. Younes, C. Cai, and G. Cai, “A survey of hybrid unmanned aerial vehicles,” Prog. Aerosp. Sci., vol. 98, pp. 91–105, 2018, doi: 10.1016/j.paerosci.2018.03.007.
  3.  A. Bacchini and E. Cestino, “Electric vtol configurations comparison,” Aerospace, vol. 6, no. 3, 2019, doi: 10.3390/aerospace6030026.
  4.  T. Goetzendorf-Grabowski, A. Tarnowski, M. Figat, J. Mieloszyk, and B. Hernik, “Lightweight unmanned aerial vehicle for emergency medical service – Synthesis of the layout,” Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., vol. 235, pp. 5–21, 2020, doi: 10.1177/0954410020910584.
  5.  S.D. Prior, Optimizing Small Multi-Rotor Unmanned Aircraft. CRC Press, Taylor & Francis Group, 2018.
  6.  G. Avanzini, E.L. de Angelis, and F. Giulietti, “Optimal performance and sizing of a battery-powered aircraft,” Aerosp. Sci. Technol., vol. 59, pp. 132–144, 2016, doi: 10.1016/j.ast. 2016.10.015.
  7.  Z. Goraj, A. Frydrychewicz, R. Świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, S. Suchodolski, and W. Chajec, “High altitude long endurance unmanned aerial vehicle of a new generation – A design challenge for a low cost, reliable and high performance aircraft,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 52, no. 3, pp. 173–194, 2004.
  8.  D. Serrano, M. Ren, A.J. Qureshi, and S. Ghaemi, “Effect of disk angle-of-attack on aerodynamic performance of small propellers,” Aerosp.  Sci. Technol., vol. 92, pp. 901–914, 2019, doi: 10.1016/j.ast.2019.07.022.
  9.  D.G. Koenig, “V/STOL Wind Tunnel Testing,” NASA Ames Research Center, Tech. Rep. TM-85936, 1984.
  10.  S. Xiang, Y.-qiang Liu, G. Tong, W.-ping Zhao, S.-xi Tong, and Y.-dong Li, “An improved propeller design method for the electric aircraft,” Aerosp. Sci. Technol., vol. 78, pp.  488–493, 2018, doi: 10.1016/j.ast.2018.05.008.
  11.  M. Rostami and A. hamzeh Farajollahi, “Aerodynamic performance of mutual interaction tandem propellers with ducted uav,” Aerosp.  Sci. Technol., vol. 108, p. 106399, 2021, doi: 10.1016/j.ast.2020.106399.
  12.  A. Bacchini, E. Cestino, B. Van Magill, and D. Verstraete, “Impact of lift propeller drag on the performance of evtol lift + cruise aircraft,” Aerosp. Sci. Technol., vol. 109, p.  106429, 2021, doi: 10.1016/j.ast.2020.106429.
  13.  M. Cerny and C. Breitsamter, “Investigation of small-scale propellers under non-axial inflow conditions,” Aerosp. Sci. Technol., vol. 106, p. 106048, 2020, doi: 10.1016/j.ast.2020.106048.
  14.  C.E. Hughes and J.A. Gazzaniga, “Low-Speed Wind Tunnel Performance of High-speed Counterrotation Propellers at Angleof- Attack,” NASA, Tech. Rep. TM-102292, 1989.
  15.  R.E. Kuhn and J.W. Draper, “Investigation of The Aerodynamic Characteristics Of A Model Wing-Propeller Combination And Of The Wing And Propeller Separately At Angles Of Attack Up To 90,” NACA, Tech. Rep. 1263, 1956.
  16.  H.C. McLemore and M.D. Cannon, “Aerodynamic Investigation Of A Four-Blade Propeller Operating Through An Angle-Of-Attack Range From 0 To 180,” NACA, Tech. Rep. 3228, 1954.
  17.  C. Russell, J. Jung, G.C. Willink, and B. Glasner, “Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles,” NASA, Tech. Rep. TM-2018-219758, 2016.
  18.  M.A.J. Kuitche, R.M. Botez, R. Viso, J.C. Maunand, and O.C. Moyao, “Blade element momentum new methodology and wind tunnel test performance evaluation for the UAS-S45 Bàlaam propeller,” CEAS Aeronaut. J., vol. 11, pp. 937–953, 2020, doi: 10.1007/s13272- 020-00462-x.
  19.  J.G. Leishman, Principles of Helicopter Aerodynamics, 2nd ed. Cambridge University Press, 2006.
  20.  S. Drzewiecki, Theorie Generale de l’Helice. Paris, 1920.
  21.  J.V. Foster and D. Hartman, “High-fidelity multi-rotor unmanned aircraft system (uas) simulation development for trajectory prediction under off-nominal flight dynamics,” in 17th AIAA Aviation Technology, Integration, and Operations Conference. AIAA, 2017, doi: 10.2514/6.2017-3271.
  22.  K. Pobikrowska, “Wind tunnel testing of electric propulsion system for an unmanned vtol aircraft,” Master’s thesis,Warsaw University of Technology, 2019.
  23.  R. Zawiski and M. Błachuta, “Modelling and optimal control system design for quadrotor platform – an extended approach,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 3, pp. 535–550, 2014, doi: 10.2478/bpasts-2014-0058.
  24.  M. Tyan, N.V. Nguyen, S. Kim, and J.-W. Lee, “Comprehensive preliminary sizing/resizing method for a fixed wing – vtol electric uav,” Aerosp. Sci. Technol., vol. 71, pp. 30–41, 2017, doi: 10.1016/j.ast.2017.09.008.
  25.  J.S. Vanderover and K.D. Visser, “Analysis of a contrarotating propeller driven transport aircraft,” 2006, AIAA Student Paper Competition, Syracuse, New York, USA. 31 March–1 April.
  26.  V. Štorch, M. Brada, and J. Nozicka, “Experimental setup for measurement of contra-rotating propellers,” in Proceedings Topical Problems of Fluid Mechanics 2017, D. Šimurda and T. Bodnár, Eds., 2017, pp. 285–294, doi: 10.14311/TPFM.2017.036.
  27.  C.P. Coleman, “A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research,” NASA, Tech. Rep. TP-3675, 1997.
  28.  B. Theys, G. Dimitriadis, P. Hendrick, and J. De Schutter, “Influence of propeller configuration on propulsion system efficiency of multi- rotor unmanned aerial vehicles,” in 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 2016, pp.  195–201, doi: 10.1109/ICUAS.2016.7502520.
  29.  J. Roskam, Airplane Aerodynamics and Performance. DARcorporation, 2016.
  30.  J.C. Bell et al., “Development of a test-rig for exploring optimal conditions of small unmanned aerial vehicle co-axial rotor systems,” in International Conference on Manufacturing Engineering Systems, 2010, pp. 439–444.
  31.  W. Zhou, Z. Ning, H. Li, and H. Hu, “An experimental investigation on rotor-to-rotor interactions of small uav propellers,” in 35th AIAA Applied Aerodynamics Conference. AIAA, 2017, doi: 10.2514/6.2017-3744.
Przejdź do artykułu

Autorzy i Afiliacje

Katarzyna Pobikrowska
1
ORCID: ORCID
Tomasz Goetzendorf-Grabowski
1
ORCID: ORCID

  1. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Coagulation is a process during which a flocculent suspension may sediment. It is characterized by its polydisperse structure. There are three main fractions of sedimentation particles after coagulation: spherical, non-spherical and porous agglomerates. Each of the fractions sediments in a different manner, for different forces act on them, due to interactions between the particles, inhibition or entrainment of neighboring particles. The existing sedimentation models of polydisperse suspension do not consider the flocculation process, i.e. the change of one particle into another during sedimentation, resulting from their agglomeration. The presented model considers the shape of particles and flocculation, which is a new approach to the description of the mathematical process of sedimentation. The velocity of sedimentation depends on the concentration of particles of a given fraction in a specific time step. Following the time step, the heights of individual fractions are calculated. Subsequently, new concentration values of individual fractions are determined for the correspondingly reduced volume of occurrence of a given fraction in the volume analyzed, taking particle flocculation into consideration. The new concentration values obtained in this way allow to recalculate the total sedimentation rates for the next time step. Subsequent iterations allow for numerical simulation of the sedimentation process.
Przejdź do artykułu

Bibliografia

  1.  Z. Su et al., “Coagulation of Surface water: Observations of the significance of biopolymers,” Water Res., vol. 126, pp. 144–152, 2017, doi: 10.1016/j.watres.2017.09.022.
  2.  L. Postolachi et al., “Improvement of coagulation process for the Prut River water treatment using aluminum sulphate,” Chem. J. Mold., vol. 10, no. 1, pp. 25–32, 2015, doi: 10.3923/jest.2017.268.275.
  3.  D. Mroczko and I. Zimoch, “Coagulation of pollutions occurring in surface waters during time of dynamic water flow,” Ecol. Eng., vol. 19, no. 2, pp. 15–22, 2018, doi: 10.12911/22998993/118273.
  4.  S. Janiszewska, “Comparison of coagulation methods and electrocoagulation in purification model gray water,” Eko-Dok, vol. 26, pp. 223– 229, 2012.
  5.  I. Krupińska and A. Konkol, “The influence of selected technological parameters on the course and effectiveness of coagulation in graund water treatment”, Uniwersytet Zielonogórski, Zeszyty Naukowe, Environmental Egineering, vol. 37, no. 157, pp. 36–52, 2015.
  6.  T.E. Dutkiewicz, Fizykochemia powierzchni, Wydawnictwa Naukowo-Techniczne, Warsaw, 1998.
  7.  R. Wardzyńska, L. Smoczyński, R. Wolicki, B. Załęska-Chróst, and Z. Bukowski, “Computer simulation of flocculation and chemical coagulation,” Ecol. Chem. Eng., vol. 17, no. 12, pp.  1663–1672, 2010.
  8.  B. Joon Lee and F. Molz, “Numerical simulation of turbulenceinduced flocculation and sedimentation in a flocculent-aided sediment retention pond,” Environ. Eng. Res., vol. 19, no. 2, pp. 165–174, 2014, doi: 10.4491/eer.2014.19.2.165.
  9.  M.A. Goula, M. Kostoglou, D.T. Karapantsios, and I.A. Zoubolis, “A CFD methodology for the design of sedimentation tanks in potable water treatment, Case study: The influence of a feed flow control baffle,” Chem. Eng. J., vol. 140, pp. 110–121, 2008, doi: 10.1016/j. cej.2007.09.022.
  10.  L.A. Kowal and M. Świderska-Bróż, Water Treatment, Polish Scientific Publishers PWN, Warsaw–Wroclaw, 2000.
  11.  P.W. Atkins, Physical chemistry, Polish Scientific Publishers PWN, Warsaw, 2007.
  12.  W.T. Hermann, Physical chemistry, Wydawnictwo lekarskie PZWL, Warsaw, 2007.
  13.  S. Berres, R. Bürger, and M.E. Tory, “Applications of polydisperse sedimentation models,” Chem. Eng. J., vol. 111, no.  2–3, pp. 105–117, 2005.
  14.  R. Błażejewski, Sedimentation of solid particles. Fundamentals of theory with examples of applications, Polish Scientific Publishers PWN, Warsaw, 2015.
  15.  J. Bandrowski, H. Merta, and J. Zioło, Sedimentation of suspensions. Rules and design, Silesian University of Technology Publisher, Gliwice, 1995.
  16.  M. Dziubiński and J. Prywer, Mechanics of two-phase fluids, WNT publisher, Warsaw, 2018.
  17.  Z. Orzechowski, J. Prywer, and R. Zarzycki, Fluid mechanics in engineering and environmental protection, Scientific and Technical Publishers, Warsaw 2009.
  18.  K.D. Basson, S. Berres, and R. Bürger, “On models of polydisperse sedimentation with particle-size-specific hindered-settling factors,”Appl. Math. Modell., vol. 33, no. 4, pp. 1815–1835, 2009, doi: 10.1016/j.apm.2008.03.021.
  19.  M. Bargieł, A.R. Ford, and M.E. Tory, “Simulation of sedimentation of polydisperse suspensions: A particle-based Approach,” AIChE J., vol. 51, no. 9, pp. 2457–2468, 2005.
  20.  S.P. Antal, R.T. Lahey, and L.E. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow, vol. 17, pp. 635, 1991, doi: 10.1016/0301-9322(91)90029-3.
  21.  J.F. Richardson and W.N. Zaki, “Sedimentation and Fluidization. Part 1,” Trans. Inst. Chem. Eng., vol. 32, pp. 35–53, 1954.
  22.  J.F. Richardson, J.H. Harker, and J.R. Backhurst, Chemical engineering, vol.2 – Particle Technology and Separtion Processes, Butterworth- Heinemann, 2002.
  23.  J. Garside and M.R. Al-Dibouni, “Velocity-voidage relationship for fluidization and sedimentation in solid-liquid systems,” Ind. Eng. Chem. Process Des. Dev., vol. 16, pp. 206–214, 1977, doi: 10.1021/i260062a008.
  24.  J. Happel and N. Epstein, “Viscous flow in multiparticle systems: cubical assemblage of uniform spheres,” Ind. Eng.Chem., vol. 46, pp. 1187–1194, 1954.
  25.  F. Barnea and J. Mizrahi, “A generalized approach of fluid dynamics of particulate system. Part I. General correlation for fluidization and sedimentation in solid multiparticle systems,” J. Fluid Mech., vol. 52, no. 2, pp. 245–268, 1973.
  26.  E. Barnea and J. Mizrahi, “A generalized approach to the fluid dynamics of particulate systems: General correlation for fluidization and sedimentation in solid multiparticle systems,” The Chem. Eng. J., vol. 5, no. 2, pp. 171–189, 1973, doi: 10.1016/0300-9467(73)80008-5.
  27.  P.M. Biesheuvel, H. Verweij and V. Breedveld, “Evaluation of instability criterion for bidisperse sedimentation,” AIChE J., vol. 47, no. 1, pp. 45–52, 2001, doi: 10.1002/aic.690470107.
  28.  V.S. Patwardhan and C. Tien, “Sedimentation and fluidization in solid-liquid systems: A simple approach,” AIChE J., vol. 31, no. 1, pp. 146–149, Jan. 1985, doi: 10.1002/aic.690310117.
  29.  M. Syamlal and T.J. O’Brien, “Simulation of granular layer inversion in liquid fluidized beds,” Int. J. Multiphase Flow, vol. 14, no. 4, pp. 473–481, 1988, doi: 10.1016/0301-9322(88)90023-7.
  30.  T.N. Smith, “The differential sedimentation of particles of two different spacies,” Inst. Chem. Eng. Trans., vol. 43, pp. T69–T73, 1965.
  31.  P. Krishnamoorthy, “Sedimentation model and analysis for differential settling of two-particle-size suspensions in the Stokes region,” Int. J. Sediment Res., vol. 25, no. 2, pp. 119–133, 2010, doi: 10.1016/S1001-6279(10)60032-7.
  32.  J. Bandrowski, H. Merta and J. Zioło, Sedimentation of suspensions, principles and design, Silesian University of Technology Publisher, Gliwice, 1995.
  33.  J.F. Richardson and F.A. Shabi, “The determination of concentration distribution on sedimenting suspension using radioactive solids,” Transactions of the Institution of Chemical Engineers, vol. 38, pp. 33–41, 1960.
  34.  T.N. Smith, “The differential sedimentation of particles of various species,” Transactions of the Institution of Chemical Engineers, vol. 45, pp. T311–T313, 1967.
  35.  B. Xue and Y. Sun, “Modeling of sedimentation of polydisperse spherical beads with a broad size distribution,” Chem. Eng. Sci., vol. 58, pp. 1531–1543, 2003, doi: 10.1016/S0009-2509(02)00656-5.
  36.  Y. Zimmels, “Theory of hindered sedimentation of polydisperse mixtures,” AIChE J., vol. 29, no. 4, pp. 669–676, 1983, doi: 10.1002/ AIC.690290423.
  37.  J. Happel, “Viscus flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles,” AIChE J., vol. 4, no. 2, pp. 197–201, 1958.
  38.  S.F. Chien, “Settling Velocity of Irregularly Shaped Particles, Society of Petroleum Engineers,” SPE Drill. Complet., vol. 4, no. 04, pp. 281–289, 1994, doi: 10.2118/26121-PA.
  39.  G.H. Ganser, “A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles,” Powder Technol., vol. 77, no.  2, pp. 143–152, 1993, doi: 10.1016/0032-5910(93)80051-B.
  40.  A. Haider and O. Levenspiel, “Drag Coefficient and Terminal Velocity of Spherical and Non-Spherical Particles,” Powder Technol., vol. 58, no. 1, pp. 63–70, 1989, doi: 10.1016/0032-5910(89)80008-7.
  41.  L. Rosendahl, “Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow,” Appl. Math. Modell., vol. 24, no. 1, pp. 11‒25, 2000, doi: 10.1016/S0307-904X(99)00023-2.
  42.  M. Zastawny, G. Mallouppas, F. Zhao, and B. van Wachem, “Derivation of drag and lift force and torque coefficients for nonspherical particles in flows,” Int. J. Multiphase Flow, vol. 39, pp 227‒239, 2012, doi: 10.1016/j.ijmultiphaseflow.2011.09.004.
  43.  A. Hölzer and M. Sommerfeld, “New simple correlation formula for the drag coefficient of non-spherical particles,” Powder Technol., vol. 184, no. 3, pp. 361–365, June 2008, doi: 10.1016/j.powtec.2007.08.021.
  44.  R. Barati, S.A. Neyshabouri, and G. Ahmadi, “Issues in Eulerian– Lagrangian modeling of sediment transport under saltation regime,” Int. J. Sediment Res., vol. 33, no. 4, pp. 441–461, 2018, doi: 10.1016/j.ijsrc.2018.04.003.
  45.  B. Oesterle and B. Dinh, ”Experiments on the lift of a spinning sphere in the range of intermediate Reynolds numbers,” Exp. Fluids, vol. 25, no.1, pp. 16–22, 1998, doi: 10.1007/s003480050203.
  46.  I. Mema, V.V. Mahajan, B W. Fitzgerald, and J.T. Padding, “Effect of lift force and hydrodynamic torque on fluidisation of nonspherical particles,” Chem. Eng. Sci., vol. 195, no. 23, pp. 642– 656, 2019, doi: 10.1016/j.ces.2018.10.009.
  47.  S.K.P. Sanjeevi, J.A.M. Kuipers, and J.T. Padding, “Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers,” Int. J. Multiphase Flow, vol.  106, pp. 325–337, 2018, doi: 10.1016/j.ijmultiphaseflow.2018.05.011.
  48.  S.F. Hoerner, Fluid-dynamic drag, Published by the Autor, 1965.
  49.  R. Ouchene, M. Khalij, B. Arcen, and A. Tanière, “A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers,” Powder Technol., vol. 303, pp. 33–43, 2016, doi: 10.1016/j.powtec.2016.07.067.
  50.  M. Leva, M. Weintraub, M. Grummer, M. Pollchik, and H.H. Storsh, “Fluid flow through packed and fluidized systems,” Bull. U. S. Min. Bur., vol. 504, 1951.
  51.  V. Saritha, N. Srinivas, and N.V. Srikanth Vuppala, “Analysis and optimization of coagulation and ?occulation process,” Appl. Water Sci., vol. 7, pp. 451–460, 2017, doi: 10.1007/s13201-014-0262-y.
  52.  M. Smoluchowski, “Versuch einer mathematischen theorie der koagulationskinetic,” Kolloider Lsungen Zeitschrift für Physikalische Chemie, vol. 92, pp. 129–168, 1917.
  53.  H. Müller, “Zur allgemeinen teorie der raschen koagulation,” Kolloidbeihefte, vol. 27, pp. 223‒250, 1928.
  54.  F.S. Torrealba, A Continuous mathematical model of the one-dimensional sedimentation process of flocculated sediment particles, University of Kentucky Doctoral Dissertations, 2010.
  55.  D. Miedzińska, T. Niezgoda, E. Małek, and Z. Zasada, “Study on coal microstructure for porosity levels assessment,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 499–505, doi: 10.2478/bpasts-2013-0049.
Przejdź do artykułu

Autorzy i Afiliacje

Mariusz Rząsa
1
ORCID: ORCID
Ewelina Łukasiewicz
2
ORCID: ORCID

  1. Department of Computer Science, Opole University of Technology, ul. Oleska 48, 45-052 Opole, Poland
  2. Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, ul. St. Mikołajczyka 5, 45-271 Opole, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This study proposes a new integrated analytical-field design method for multi-disc magnetorheological (MR) clutches. This method includes two stages, an analytical stage (composed of 36 algebraic formulas) and a field stage based on the finite element method (FEM). The design procedure is presented systematically, step-by-step, and the results of the consecutive steps of the design calculations are depicted graphically against the background of the entire considered clutch. The essential advantage of the integrated method with this two-stage structure is the relatively high accuracy of the first analytical stage of the design procedure and the rapid convergence of the second field stage employing the FEM. The essence of the new method is the introduction of a yoke factor kY (the concept of which is based on the theory of induction machines) that determines the ratio of the total magnetomotive force required to magnetise the entire magnetic circuit of the clutch to the magnetomotive force required to magnetise the movement region. The final value, the yoke factor kY is determined using loop calculations. The simplicity of the developed design method predisposes its use in optimisation calculations. The proposed method can also be adapted to other MR devices analysed in shear mode.
Przejdź do artykułu

Bibliografia

  1.  P. Martynowicz, “Study of vibration control using laboratory test rig of wind turbine tower-nacelle system with mr damper based tuned vibration absorber,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 2, pp. 347–359, 2016.
  2.  J. Snamina and B. Sapiński, “Energy balance in self-powered mr damper-based vibration reduction system,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 1, pp. 75–80, 2011, doi: 10.2478/v10175-011-0011-4.
  3.  J.L.U. Lee, A.K. Saha et al., “Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems,” Sci. World J., 2013, doi: 10.1155/2013/894016.
  4.  A. Pręgowska, R. Konowrocki, and T. Szolc, “On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid,” J. Theor. Appl. Mech., vol. 51, no. 4, pp. 979–992, 2013.
  5.  J. Gołdasz and B. Sapiński, Insight into Magnetorheological Shock Absorbers, ser. EBL-Schweitzer. Springer International Publishing, 2014. [Online]. Available: https://books.google.pl/books?id=CbXzBQAAQBAJ.
  6.  W. East, J. Turcotte, J.-S. Plante, and G. Julio, “Experimental assessment of a linear actuator driven by magnetorheological clutches for automotive active suspensions,” J. Intell. Mater. Syst. Struct., vol. 32, no. 9, p. 955–970, 2021, doi: 10.1177/1045389X21991237.
  7.  E.J. Park, L. Falcao, and A. Suleman, “Multidisciplinary design optimization of an automotive magnetorheological brake design,” Comput. Struct., vol. 28, pp. 207–216, 2008, doi: 10.1016/j.compstruc.2007.01.035.
  8.  C. Rossa, A. Jaegy, A. Micaelli, and J. Lozada, “Development of a multilayered wide-ranged torque magnetorheological brake,” Smart Mater. Struct., vol. 23, no. 2, p. 025028, Jan 2014, doi: 10.1088/0964-1726/23/2/025028.
  9.  C. Rossa, A. Jaegy, J. Lozada, and A. Micaelli, “Design considerations for magnetorheological brakes,” IEEE/ASME Trans. Mechatron., vol. 19, no. 5, pp. 1669–1680, 2014, doi: 10.1109/TMECH.2013.2291966.
  10.  J.W. Sohn, J. Jeon, Q.H. Nguyen, and S.-B. Choi, “Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation,” Smart Mater. Struct., vol.  24, no. 8, p. 085009, Jul 2015, doi: 10.1088/0964-1726/24/8/085009.
  11.  S. Li, W. Meng, and Y. Wang, “Numerical and experimental studies on a novel magneto-rheological fluid brake based on fluid–solid coupling,” Sci. Prog., vol. 103, no. 1, p. 0036850419879000, 2020, doi: 10.1177/0036850419879000.
  12.  K. Kluszczyński and Z. Pilch, “Mr multi disc clutches – construction, parameters and field model,” in 2019 20th International Conference on Research and Education in Mechatronics (REM), May 2019, pp. 1–6, doi: 10.1109/REM.2019.8744131.
  13.  H. Böse, T. Gerlach, and J. Ehrlich, “Magnetorheological torque transmission devices with permanent magnets,” J. Phys. Conf. Ser., vol. 412, p. 012050, Feb 2013, doi: 10.1088/1742-6596/412/1/012050.
  14.  F. Bucchi, P. Forte, F. Frendo, A. Musolino, and R. Rizzo, “A fail-safe magnetorheological clutch excited by permanent magnets for the disengagement of automotive auxiliaries,” J. Intell. Mater. Syst. Struct., vol. 25, no. 16, pp. 2102–2114, 2014, doi: 10.1177/1045389X13517313.
  15.  Z. Li, X. Zhang, K. Guo, M. Ahmadian, and Y. Liu, “A novel squeeze mode based magnetorheological valve: design, test and evaluation,” Smart Mater. Struct., vol. 25, no. 12, p. 127003, Nov 2016, doi: 10.1088/0964-1726/25/12/127003.
  16.  Z. Pilch and J. Domin, “Conception of the throttle-return valve for the magnetorheological fluid,” Arch. Electr. Eng., vol. 67, no. 1, 2018, doi: 10.24425/118990.
  17.  B. Horváth and I. Szalai, “Nonlinear magnetic properties of magnetic fluids for automotive applications,” Hung. J. Ind. Chem., vol. 48, no. 1, p. 61–65, Jul 2020, doi: 10.33927/hjic-2020-09.
  18.  P. Kowol and Z. Pilch, “Analysis of the magnetorheological clutch working at full slip state,” Electr. Rev., vol. R. 91, no. 6, pp. 108–111, 2015.
  19.  G. Chen, Y. Lou, and T. Shang, “Mathematic modeling and optimal design of a magneto-rheological clutch for the compliant actuator in physical robot interactions,” IEEE Rob. Autom. Lett., vol. 4, no. 4, pp. 3625–3632, 2019, doi: 10.1109/LRA.2019.2928766.
  20.  R. Rizzo, “An innovative multi-gap clutch based on magnetorheological fluids and electrodynamic effects: magnetic design and experimental characterization,” Smart Mater. Struct., vol. 26, no.  1, p. 015007, Dec 2016, doi: 10.1088/0964-1726/26/1/015007.
  21.  Q.H. Nguyen and S.B. Choi, “Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume,” Smart Mater. Struct., vol. 21, no. 1, p.  015012, Dec 2011, doi: 10.1088/0964-1726/21/1/015012.
  22.  W. Burlikowski and K. Kluszczyński, “Comparison of different mathematical models of an electromechanical actuator,” in 2012 9th France- Japan 7th Europe-Asia Congress on Mechatronics (MECATRONICS)/13th Int’l Workshop on Research and Education in Mechatronics (REM), 2012, pp. 403–408.
  23.  P.-B. Nguyen and S.-B. Choi, “A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake,” Smart Mater. Struct., vol.  20, no. 12, p. 125003, Nov 2011, doi: 10.1088/0964-1726/20/12/125003.
  24.  T. Wolnik, “Alternate computational method for induction disk motor based on 2d fem model of cylindrical motor,” Arch. Electr. Eng., vol. 69, no. 2020, pp. 233–244, 2020, doi: 10.24425/aee.2020.131770.
  25.  P. Kowol, “Application of magnetic field model for design procedure of magnetorheological rotary-linear brake,” Electr. Rev., vol. 81, no. 12, pp. 22–24, 2005.
  26.  M. Kciuk, K. Chwastek, K. Kluszczyński, and J. Szczygłowski, “A study on hysteresis behaviour of sma linear actuators based on unipolar sigmoid and hyperbolic tangent functions,” Sens. Actuators, A, vol.  243, pp. 52–58, 2016, doi: 10.1016/j.sna.2016.02.012.
  27.  M. Kciuk, W. Kuchcik, Z. Pilch, and W. Klein, “A novel sma drive based on the Graham Clock escapement and resistance feedback,” Sens. Actuators, A, vol. 285, pp. 406–413, 2019, doi: 10.1016/j.sna.2018.11.044.
  28.  B.W. Inc., “bearing-sizes.” [Online]. Available: https://www.bearingworks.com/bearing-sizes/.
  29.  LORD-CORPORATION, “Mrf-140cgmrfluid.” [Online]. Available: https://lordfulfillment.com/pdf/44/DS7012_MRF-140CGMRFluid. pdf.
  30.  A. Suite. [Online]. Available: http://www.agros2d.org/.
  31.  V. Hegde and G. Maruthi, “Experimental investigation on detection of air gap eccentricity in induction motors by current and vibration signature analysis using non-invasive sensors,” Energy Procedia, vol. 14, pp. 1047–1052, 2012, 2011 2nd International Conference on Advances in Energy Engineering (ICAEE).
  32.  X. Hu, Y. Li, and L. Luo, “The influence of air gap thickness between the stator and rotor on nuclear main pump,” Energy Procedia– Proceedings of the 9th International Conference on Applied Energy, vol. 142, pp. 259–264, 2017, doi: 10.1016/j.egypro.2017.12.041.
  33.  M.N. Benallal, M.A. Vaganov, D.S. Pantouhov, E. Ailam, and K. Hamouda, “Optimal value of air gap induction in an induction motor,” in The XIX International Conference on Electrical Machines – ICEM 2010, 2010, pp. 1–4, doi: 10.1109/ICELMACH.2010.5608185.
  34.  K. Kluszczyński and Z. Pilch, “Basic features of mr clutches – resulting from different number of discs,” in 2019 15th Selected Issues of Electrical Engineering and Electronics (WZEE), December 2019, pp. 1–4, doi: 10.1109/WZEE48932.2019.8979786.
  35.  J.H. Kuhlmann, Design of electrical apparatus. New York, J. Wiley and Sons; London, Chapman and Hall, 1954.
  36.  ASTM International, “Standard specification for standard nominal diameters and cross-sectional areas of AWG sizes of solid round wires used as electrical conductors,” 2014. [Online]. Available: http://www.astm.org/Standards/B258.htm.
  37.  J. Bajkowski, “Operational characteristics of rotating magnetoreological clutches and brakes,” J. Mach. Constr. Maint., vol. 106, no. 3/2017, pp. 7–12, 2017.
Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof Kluszczyński
1
ORCID: ORCID
Zbigniew Pilch
1

  1. Cracow University of Technology, Faculty of Electrical and Computer Engineering, ul. Warszawska 24, 31-155, Cracow, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This article deals with the effect of selected machining parameter values in hard turning of tested OCHN3MFA steel in terms of SEM microstructural analysis of workpiece material, cutting forces, long-term tests, and SEM observations of flank wear VB and crater wear KT of used changeable coated cemented carbide cutting inserts in the processes of performed experiments. OCHN3MFA steel was selected as an experimental (workpiece) material. The selected experimental steel was analyzed prior to hard turning tests to check the initial microstructure of bulk material and subsurface microstructure after hard turning and chemical composition. Study of workpiece material’s microstructure and worn cemented carbide cutting inserts was performed with Tescan Vega TS 5135 scanning electron microscope (SEM) with the X-Ray microanalyzer Noran Six/300. The chemical composition of workpiece material was analyzed with Tasman Q4 surface analyzer. All hard turning experiments of the used specimens were performed under the selected machining parameters in the SU 50A machine tool with the 8th selected individual geometry of coated cementite carbide cutting inserts clamped in the appropriate DCLNR 2525M12-M type of cutting tool holder. During the hard turning technological process of the individual tested samples made of OCHN3MFA steel, cutting forces were measured with a Kistler 9257B piezoelectric dynamometer, with their subsequent evaluation using Dynoware software. After the long-term testing, other experiments and results were also realized, evaluating the influence of selected machining parameters with different cutting insert geometry on the achieved surface quality.
Przejdź do artykułu

Bibliografia

  1.  G. Sun, R. Zhou, J. Lu, and J. Mazumder, “Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel,” Acta Mater., vol. 84, pp. 172–189, 2015, doi: 10.1016/j.actamat.2014.09.028.
  2.  A.K. Sahoo and B. Sahoo, “Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts,” Measurement, vol. 45, no. 8, pp. 2153–2165, 2012, doi: 10.1016/j.measurement.2012.05.015.
  3.  R. Lalbondre, P. Krishna, and G.C. Mohankumar, “Machinability Studies of Low Alloy Steels by Face Turning Method: An Experimental Investigation,” Procedia Eng., vol. 64, pp. 632–641, 2013, doi: 10.1016/j.proeng.2013.09.138.
  4.  Ş. Baday, H. Başak, and A. Güral, “Analysis of spheroidized AISI 1050 steel in terms of cutting forces and surface quality,” Met. Mater., vol. 54, no. 05, pp. 315–320, 2016, doi: 10.4149/km_2016_5_315.
  5.  R. Meyer, J. Köhler, and B. Denkena, “Influence of the tool corner radius on the tool wear and process forces during hard turning,” Int. J. Adv. Manuf. Technol., vol. 58, no. 9–12, pp. 933–940, 2011, doi: 10.1007/s00170-011-3451-y.
  6.  M.S.H. Bhuiyan, I.A. Choudhury, and M. Dahari, “Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning,” J. Manuf. Syst., vol. 33, no. 4, pp. 476–487, 2014, doi: 10.1016/j.jmsy.2014.04.005.
  7.  L.H. Maia, A.M. Abrao, W.L. Vasconcelos, W.F. Sales, and A.R. Machado, “A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission,” Tribol. Int., vol. 92, pp. 519–532, 2015, doi: 10.1016/j.triboint.2015.07.024.
  8.  A. Cakan, F. Evrendilek, and V. Ozkaner, “Data-driven simulations of flank wear of coated cutting tools in hard turning,” Mechanics, vol. 21, no. 6, 2016, doi: 10.5755/j01.mech.21.6.12199.
  9.  W.B. Rashid, S. Goel, J.P. Davim, and S.N. Joshi, “Parametric design optimization of hard turning of AISI 4340 steel (69 HRC),” Int. J. Adv. Manuf. Technol., vol. 82, no. 1‒4, pp. 451–462, 2015, doi: 10.1007/s00170-015-7337-2.
  10.  G. Bartarya and S.K. Choudhury, “State of the art in hard turning,” Int. J. Mach. Tools Manuf., vol. 53, no. 1, pp. 1–14, 2012, doi: 10.1016/j. ijmachtools.2011.08.019.
  11.  W. Jiang and A.P. Malshe, “A novel cBN composite coating design and machine testing: A case study in turning,” Surf. Coat. Technol., vol. 206, no. 2‒3, pp. 273–279, 2011, doi: 10.1016/j.surfcoat.2011.07.008.
  12.  B.D. Beake, J.F. Smith, A. Gray, G.S. Fox-Rabinovich, S.C. Veldhuis, and J.L. Endrino, “Investigating the correlation between nano-impact fracture resistance and hardness/modulus ratio from nanoindentation at 25–500°C and the fracture resistance and lifetime of cutting tools with Ti1−xAlxN (x  = 0.5 and 0.67) PVD coatings in milling operations,” Surf. Coat. Technol., vol. 201, no. 8, pp. 4585–4593, 2007, doi: 10.1016/j.surfcoat.2006.09.118.
  13.  A. Cakan, “Real-time monitoring of flank wear behavior of ceramic cutting tool in turning hardened steels,” Int. J. Adv. Manuf. Technol., vol. 52, no. 9‒12, pp. 897–903, 2010, doi: 10.1007/s00170-010-2793-1.
  14.  J. Jaworski and T. Trzepieciński, “Research on durability of turning tools made of low-alloy high-speed steels,” Met. Mater., vol. 54, no. 1, pp. 17–25, 2016, doi: 10.4149/km_2016_1_17.
  15.  W. Zebala, “Tool stiffness influence on the hosen physical parameters on the milling process,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 3, pp. 597–604, 2012, doi: 10.2478/v10175-012-0071-0.
  16.  P. Raja, R. Malajamuthi, and M. Sakthivel “Experimental investigation of cryogenically treated HSS tool in turning AISI1045 using fuzzy logic Taguchi approach,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 687–696, 2019, doi: 10.24425/bpasts. 2019.130178.
  17.  J. Waszko, “Laser surface remelting of powder metallurgy high speed steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no.  6, pp. 1425–1432, 2021, doi: 10.24425/bpasts.2020.135385.
  18.  I. Barényi et al., “Material and technological investigation of machined surfaces of the OCHN3MFA steel,” Met. Mater., vol. 57, no. 02, pp. 131–142, 2020, doi: 10.4149/km_2019_1_131.
Przejdź do artykułu

Autorzy i Afiliacje

Jozef Majerík
1
Igor Barényi
1
Zdenek Pokorný
2
Josef Sedlák
3
Vlastimil Neumann
4
David Dobrocký
2
Aleš Jaroš
3
Michal Krbaťa
1
Jaroslav Jambor
1
Roman Kusenda
1
Miroslav Sagan
1
Jiri Procházka
2

  1. Department of Engineering, Alexander Dubcek University of Trencin, Trencin, Slovak Republic
  2. Department of Mechanical Engineering, University of Defence in Brno, Brno, Czech Republic
  3. Department of Manufacturing Technology, Brno University of Technology, Brno, Czech Republic
  4. Department of Combat and Special Vehicles, University of Defence in Brno, Brno, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The goal of the research was to analyze the acoustic emission signal recorded during heat treatment. On a special stand, samples prepared from 27MnCrB5-2 steel were tested. The steel samples were heated to 950°C and then cooled continuously in the air. Signals from phase changes occurring during cooling were recorded using the system for registering acoustic emission. As a result of the changes, Widmanstätten ferrite and bainite structures were observed under a scanning microscope. The recorded acoustic emission signal was analyzed and assigned to the appropriate phase transformation with the use of artificial neural networks.
Przejdź do artykułu

Bibliografia

  1.  T.Z. Wozniak, K. Rozniatowski, and Z. Ranachowski, “Acoustic emission in bearing steel during isothermal formation of midrib,” Met. Mater. Int., vol. 17, pp. 365–373, 2011, doi: 10.1007/s12540-011-0611-4.
  2.  L. Kyzioł, K. Panasiuk, G. Hajdukiewicz, and K. Dudzik, “Acoustic Emission and K-S Metric Entropy as Methods for Determining Mechanical Properties of Composite Materials”, Sensors, vol. 21, p. 145, 2021, doi: 10.3390/s21010145.
  3.  A. Adamczak-Bugno, G. Swit, and A. Krampikowska, “Application of the Acoustic Emission Method in the Assessment of the Technical Condition of Steel Structures,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 471, no. 3 p. 032041, 2019, doi: 10.1088/1757-899X/471/3/032041.
  4.  A. Krampikowska, and A. Adamczak-Bugno, “Evaluation of destructive processes in FRC composites using time-frequency analysis of AE signals,” MATEC Web Conf., vol. 262, p. 06006, 2019, doi: 10.1051/matecconf/201926206006.
  5.  G. Świt, A. Krampikowska, T. Pała, S. Lipiec, and I. Dzioba, “Using AE Signals to Investigate the Fracture Process in an Al–Ti Laminate,” Materials, vol. 13, p. 2909, 2020, doi: 10.3390/ma13132909.
  6.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, P. Ranachowski, and A. Trafarski, “The application of acoustic emission and artificial neural networks in an analysis of kinetics in the phase transformation of tool steel during austempering,” Arch. Metall. Mater., vol. 62, pp. 603‒609, 2017, doi: 10.1515/amm-2017-0089.
  7.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, A. Trafarski, and G. Domek, “Analysis of acoustic emission signals at austempering of steels using neural networks,” Met. Mater. Int., vol.  23, pp. 426‒433, 2017, doi: 10.1007/s12540-017-6347-z.
  8.  Y. Li et al., “Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel”, Int. J. Miner. Metall. Mater., vol. 21, pp. 1196–1204, 2014, doi: 10.1007/s12613-014-1027-1.
  9.  B.I. Voronenko, “Acoustic emission during phase transformations in alloys,” Met. Sci. Heat Treat., vol. 24, pp. 545‒553, 1982, doi: 10.1007/BF00769364.
  10.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, A. Trafarski, and S. Marciniak, “The use of acoustic emission and neural network in the study of phase transformation below MS,” Materials, vol. 14, no. 3, p. 551, 2021, doi: 10.3390/ma14030551.
  11.  T.Z. Wozniak, K. Różniatowski, and Z. Ranachowski, “Application of acoustic emission to monitor bainitic and martensitic transformation,” Kovove Mater., vol. 49, pp. 319‒331, 2011, doi: 10.4149/km_2011_5_319.
  12.  A. Pawełek, Z. Ranachowski, A. Piątkowski, S. Kúdela, Z. Jasieński, and S. Kúdela, “Acoustic emission and strain mechanisms during compression at elevated temperature of ß phase Mg-Li-Al composites reinforced with ceramic fibres,” Arch. Metall. Mater., vol. 52, pp. 41‒48. 2007.
  13.  Z. Ranachowski, “Acoustic emission in the diagnosis of civil structures,” Roads Bridges, vol. 2, pp. 151‒173, 2012.
  14.  J. Ranachowski, Problemy współczesnej akustyki, Polska Akademia Nauk, IPPT, Warszawa, 1991.
  15.  R. Botten, X. Wu, D. Hu, and M.H. Loretto, “The significance of acoustic emission during stressing of TiAl-based alloys,” Acta Mater., vol. 49, pp. 1687‒1691, 2001, doi: 10.1016/S1359-6454(01)00091-X.
  16.  A. Lambert, X. Garat, T. Sturel, A. F. Gourgues, and A. Gingell, “Aplication of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel,” Scripta Mater., vol. 43, pp. 161‒166, 2000, doi: 10.1016/S1359-6462(00)00386-9.
  17.  K. Panasiuk, L. Kyziol, K. Dudzik, and G. Hajdukiewicz, “Application of the Acoustic Emission Method and Kolmogorov-Sinai Metric Entropy in Determining the Yield Point in Aluminium Alloy,” Materials, vol. 13, p. 1386, 2020, doi: 10.3390/ma13061386.
  18.  A. Pawełek, W.S. Ozgowicz, Z. Ranachowski, and S. Kúdela, “Behaviour of acoustic emission in deformation and microcracking processes of Mg alloys matrix composites subjected to compression tests,” Arch. Curr. Res. Int., vol.8, no. 2, pp. 1‒13, 2017, doi: 10.9734/ ACRI/2017/34598.
  19.  R. Karczewski, A. Zagórski, J. Płowiec, and W. Spychalski, “Charakterystyki sygnałów akustycznych podczas obciążania wybranych stali konstrukcyjnych wykorzystywanych do budowy urządzeń ciśnieniowych,” Weld. Tech. Rev., vol. 83, no. 13, 2011, doi: 10.26628/ wtr.v83i13.417.
  20.  I. Baran, “Non-destructive testing of technical equipment using acoustic emission method,” Nondestr. Testing Diagn., vol. 4, pp. 15‒19, 2019, doi: 10.26357/BNiD.2019.017.
  21.  D. Aggelis, E. Kordatos, and T. Matikas, “Acoustic emission for fatigue damage characterization in metal plates”, Mech. Res. Commun., vol. 38, pp. 106–110, 2011, doi: 10.1016/j.mechrescom.2011.01.011.
  22.  K. Jemielniak, “Some aspects of acoustic emission signal pre-processing,” J. Mater. Process. Tech., vol. 109, pp. 242‒247, 2001, doi: 10.1016/S0924-0136(00)00805-0.
  23.  RILEM Technical Committee (Masayasu Ohtsu), “Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete,” Mater. Struct., vol. 43, pp. 1177–1181, 2010, doi: 10.1617/s11527- 010-9638-0.
  24.  Z. Ranachowski, “The application of a neural network to classify the acoustic emission waveforms emitted by the concrete under thermal stress,” Arch. Acoust., vol. 21, no. 1, pp. 89‒98, 1996.
  25.  H.K.D.H. Bhadeshia, “Phase transformations contributing to the properties of modern steels,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 255–256, 2010, doi: 10.2478/v10175-010-0024-4.
  26.  S.M.C. Van Bohemen, An acoustic emission study of martensitic and bainitic transformations in carbon steel, Delft University Press, 2004.
  27.  A. Pawełek, J. Kuśnierz, J. Bogucka, Z. Jasieński, and Z. Ranachowski, “Acoustic emission and the Portevin-Le Châtelier effect in tensile tested Al alloys before and after processing by accumulative roll bonding,” Arch. Metall. Mater., vol.  54, pp. 83‒88, 2009.
  28.  A. Pawełek et al., “Acoustic emission and the Portevin-Le Chatelier effect in tensile tested Al processed by ARB technique,” Arch. Acoust., vol. 32, no. 4, pp. 955‒962, 2007.
  29.  H.N.G. Wadley and C.B. Scruby, “Cooling rate effects on acoustic emission- microstructure relationships in ferritic steels,” J. Mater. Sci., vol. 26, pp. 5777–5792, 1991, doi: 10.1007/BF01130115.
  30.  C.B. Scruby and H.N.G Wadley, “Tempering Effects on Acoustic Emission Microstructural Relationships in Ferritic Steels,” J. Mater. Sci., vol. 28, pp. 2501–2516, 1993, doi: 10.1007/BF01151686.
  31.  V.V. Roshchupkin et al., “The use of acoustic methods to investigate the dynamics of recrystallization and phase transitions in Armco iron and structural steel,” High Temp., vol.  42, pp. 883–887, 2004, doi: 10.1007/s10740-005-0032-5.
  32.  G.R. Speich and A.J. Schwoeble, “Acoustic Emission During Phase Transformałion in Steel”, in Monitoring Structural Integrity by Acoustic Emission STP571. J. C. Spanner and J.W. McElroy, Eds., ASTM International, USA, 1975, pp. 40‒58.
Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Trafarski
1
Małgorzata Łazarska
1
Zbigniew Ranachowski
2
ORCID: ORCID

  1. Institute of Materials Engineering, Kazimierz Wielki University in Bydgoszcz, ul. J.K. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The increasing concern for worldwide energy production is the result of global industrialization and decreasing energy resources. Despite the cost factor, solar energy continues to become more popular due to its long-term nature as a resource and growing conversion efficiency. A dye-sensitized solar cell converts visible light into electricity. The efficient use of dye as a sensitizer is the critical factor in enhancing the performance of the dye-sensitized solar cell. Natural dyes are found in abundance in leaves, flower petals, roots, and other natural resources. Due to the advantages of natural dyes such as cost-effectiveness, the simpler extraction process, and being environmentally friendly, etc., researchers are working extensively to replace synthetic dyes with natural ones. This paper highlights the various types of natural dyes and their effect on the efficiency of the dye-sensitized solar cell.
Przejdź do artykułu

Bibliografia

  1.  S.M. Sze and K.K. Ng, Physics of semiconductor devices. John Wiley & Sons, 2006.
  2.  G.P. Smestad, Optoelectronics of Solar Cells,. SPIE press, 2002.
  3.  D.M. Tobnaghi, R. Madatov, and D. Naderi, “The effect of temperature on electrical parameters of Solar Cells,” Inte. J. Adv. Res. Electr. Electron. Instrument. Eng., vol. 2, no. 12, pp. 6404–6407, 2013.
  4.  G. Dennler, M.C. Scharber, and C.J. Brabec, “Polymer‐fullerene bulk‐heterojunction Solar Cells,” Adv. Mater., vol. 21, no. 13, pp. 1323– 1338, 2009.
  5.  M. Igalson and A. Urbaniak, “Defect states in the CIGS Solar Cells, by photocapacitance and deep level optical spectroscopy,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 53, pp. 157–161, 2005.
  6.  N.A. Ludin, A.A.-A. Mahmoud, A.B. Mohamad, A.A.H. Kadhum, K. Sopian, and N.S.A. Karim, “Review on the development of natural dye photosensitizer for dye-sensitized Solar Cells,” Renew. Sustain. Energy Rev., vol. 31, pp. 386–396, 2014.
  7.  S.A. Taya, T.M. El-Agez, K.S. Elrefi, and M.S. Abdel-Latif, “Dye-sensitized Solar Cells, based on dyes extracted from dried plant leaves,” Turk. J. Phys., vol. 39, no. 1, pp. 24–30, 2015.
  8.  F. Gao et al., “A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye- sensitized solar cell,” Chem. Commun., no. 23, pp. 2635–2637, 2008.
  9.  J. Burschka et al., “Sequential deposition as a route to high-performance perovskite-sensitized Solar Cells,” Nature, vol. 499, no. 7458, pp. 316–319, 2013.
  10.  K. Gwóźdź et al., “Si/ZnO nanorods with Ag nanoparticles/AZO heterostructures in PV applications,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 3, 2016.
  11.  A. Mbonyiryivuze et al., “Natural dye sensitizer for Grätzel cells: Sepia melanin,” Phys. Mater. Chem., vol. 3, pp. 1–6, 2015.
  12.  A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized Solar Cells,” Chem. Rev., vol.  110, no. 11, pp. 6595–6663, 2010.
  13.  H.C. Weerasinghe, F. Huang, and Y.-B. Cheng, “Fabrication of flexible dye sensitized Solar Cells, on plastic substrates,” Nano-Energy, vol. 2, no. 2, pp. 174–189, 2013.
  14.  B.P. Jelle, C. Breivik, and H.D. Røkenes, “Building integrated photovoltaic products: A state-of-the-art review and future research opportunities,” Sol. Energy, Mater. Solar Cells, vol. 100, pp. 69–96, 2012.
  15.  L.P. Heiniger et al., “See‐Through Dye‐Sensitized Solar Cells,: Photonic Reflectors for Tandem and Building Integrated Photovoltaics,” Adv. Mater., vol. 25, no. 40, pp.  5734–5741, 2013.
  16.  H. Hug, M. Bader, P. Mair, and T. Glatzel, “Biophotovoltaics: natural pigments in dye-sensitized Solar Cells,” Appl. Energy, vol. 115, pp. 216–225, 2014.
  17.  J.G. López-Covarrubias, L. Soto-Muñoz, A.L. Iglesias, and L.J. Villarreal-Gómez, “Electrospun nanofibers applied to dye solar sensitive cells: A review,” Materials, vol. 12, no. 19, p. 3190, 2019.
  18.  S.A. Abrol, C. Bhargava, and P.K. Sharma, “Fabrication of DSSC using doctor blades method incorporating polymer electrolytes,” Mater. Res., Express, vol. 8, no. 4, p. 045010, 2021.
  19.  S. Fukurozaki, R. Zilles, and I. Sauer, “Energy payback time and CO2 emissions of 1.2 kWp photovoltaic roof-top system in Brazil,” Int. Smart Grid Clean Energy, vol. 2, pp. 164–169, 2013.
  20.  K. Solangi, M. Islam, R. Saidur, N. Rahim, and H. Fayaz, “A review on global Sol. Energy, Policy,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 2149–2163, 2011.
  21.  M.A. Albrecht, C.W. Evans, and C.L. Raston, “Green Chemistry and the health implications of nanoparticles,” Green Chem., vol. 8, no. 5, pp. 417–432, 2006.
  22.  K. Hara et al., “Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru (II) terpyridyl complex photosensitizer,” Sol. Energy Mater. Solar Cells, vol. 85, no. 1, pp. 21–30, 2005.
  23.  P.K. Samanta and N.J. English, “Opto-electronic properties of stable blue photosensitisers on a TiO2 anatase-101 surface for efficient dye-sensitised Solar Cells,” Chem. Phys. Letters, vol. 731, p. 136624, 2019.
  24.  L. Srinivasan, K.V. Ramanathan, G. Gopakumar, S.V. Nair, and M. Shanmugam, “RF-sputtered tungsten enabled surface plasmon effect in dye sensitised Solar Cells,” IET Optoelectron., vol.  14, no. 5, pp. 274–277, 2020.
  25.  J.M. Bridges, “Integrated electronics in defense systems,” in Proc. IEEE, Washington DC, 14 December, 1964.
  26.  A. Goodrich et al., “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy, Mater. Solar Cells, vol. 114, pp. 110–135, 2013.
  27.  Y. Zhou, J. Lu, Y. Zhou, and Y. Liu, “Recent advances for dyes removal using novel adsorbents: a review,” Environ. Pollut., vol. 252, pp. 352–365, 2019.
  28.  M. Kutraleeswaran, M. Venkatachalam, M. Saroja, P. Gowthaman, and S. Shankar, “Dye sensitized Solar Cells,—A Review,” J. Adv. Res. Appl. Sci., vol. 4, pp. 26–38, 2017.
  29.  S.A. Abrol, C. Bhargava, and P.K. Sharma, “Material and its selection attributes for improved DSSC,” Mater. Today: Proceedings, vol. 42, pp. 1477–1484, 2021.
  30.  S.A. Abrol, C. Bhargava, and P.K. Sharma, “Electrical properties enhancement of Liquid and Polymer Gel based electrolytes used for DSSC applications,” Mater. Res. Express, vol. 7, no. 10, p.  106202, 2020.
  31.  S.K. Das, S. Ganguli, H. Kabir, J.I. Khandaker, and F. Ahmed, “Performance of Natural Dyes in Dye-Sensitized Solar Cell as Photosensitizer,” Trans. Electr. Electron. Mater., vol.  21, no. 1, pp. 105–116, 2020.
  32.  N. Kumara, A. Lim, C.M. Lim, M.I. Petra, and P. Ekanayake, “Recent progress and utilization of natural pigments in dye sensitized Solar Cells,: A review,” Renew. Sustain. Energy Rev., vol.  78, pp. 301–317, 2017.
  33.  A. Andualem and S. Demiss, “Review on dye-sensitized Solar Cells, (DSSCs),” Edelweiss Appl. Sci. Tech., vol. 2, pp.  145–150, 2018.
  34.  S.A. Abrol, C. Bhargava, and P.K. Sharma, “Reliability analysis and condition monitoring of polymer based dye sensitized solar cell: a DOE approach,” Mater. Res. Express, vol. 8, no. 4, p.  045309, 2021.
  35.  U. Mehmood, S.-U. Rahman, K. Harrabi, I.A. Hussein, and B. Reddy, “Recent advances in dye sensitized Solar Cells,” Adv. Mater. Sci. Eng., vol. 2014, pp. 1–12, 2014.
  36.  N. Patni, P. Sharma, M. Parikh, P. Joshi, and S.G. Pillai, “Cost effective approach of using substrates for electrodes of enhanced efficient dye sensitized solar cell,” Mater. Res. Express, vol. 5, no. 9, p. 095509, 2018.
  37.  B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
  38.  M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Grätzel, and T. Ma, “Economical Pt-free catalysts for counter electrodes of dye-sensitized Solar Cells,” JACS, vol.  134, no. 7, pp. 3419–3428, 2012.
  39.  A. Kargar, “Semiconductor Nanostructures for Solar Water Splitting and Hydrogen Production: Design, Growth/Fabrication, Characterization, and Device Performance,” UC San Diego, 2015.
  40.  J.C. Jamieson and B. Olinger, “Pressure-temperature studies of anatase, brookite rutile, and TiO2 (II): A discussion,” Am. Mineral.,: J. Earth Planet. Mater., vol. 54, no. 9‒10, pp. 1477–1481, 1969.
  41.  A. Kumar, R. Jose, K. Fujihara, J. Wang, and S. Ramakrishna, “Structural and optical properties of electrospun TiO2 nanofibers,” Chem. Mater., vol. 19, no. 26, pp.  6536–6542, 2007.
  42.  S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J. Boerio-Goates, and B.F. Woodfield, “Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability,” Am. Mineral., vol. 94, no. 2‒3, pp.  236–243, 2009.
  43.  F.-L. Toma et al., “Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying,” Appl. Catal. B Environment., vol. 68, no. 1‒2, pp. 74–84, 2006.
  44.  L. Liu, H. Zhao, J.M. Andino, and Y. Li, “Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry,” ACS Catal., vol. 2, no. 8, pp.  1817–1828, 2012.
  45.  N. Rawal, A. Vaishaly, H. Sharma, and B.B. Mathew, “Dye sensitized Solar Cells,: the emerging technology,” Energy Power Eng.-Eng. Sci. EPES, vol. 2, no. 2, pp. 46–52, 2015.
  46.  N. Robertson, “Optimizing dyes for dye‐sensitized Solar Cells,” Angew. Chem. Int. Ed., vol. 45, no. 15, pp. 2338–2345, 2006.
  47.  S.A. Haque et al., “Charge separation versus recombination in dye-sensitized nanocrystalline Solar Cells,: the minimization of kinetic redundancy,” JACS, vol. 127, no. 10, pp. 3456–3462, 2005.
  48.  S. Hao, J. Wu, Y. Huang, and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell,” Sol. Energy, vol. 80, no. 2, pp. 209–214, 2006.
  49.  G. Calogero, A. Bartolotta, G. Di Marco, A. Di Carlo, and F. Bonaccorso, “Vegetable-based dye-sensitized Solar Cells,” Chem. Soc. Rev., vol. 44, no. 10, pp. 3244–3294, 2015.
  50.  P. Péchy et al., “Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films,” J. Chem. Soc., Chem. Commun., no. 1, pp. 65–66, 1995.
  51.  H. Tian et al., “Dye-sensitised Solar Cells,” in Sol. Energy Capture Mater., 2019, pp. 89–152.
  52.  A.M. Ammar, H.S.H. Mohamed, M.M.K. Yousef, G.M. Abdel-Hafez, A.S. Hassanien, and A.S.G. Khalil, “Dye-Sensitized Solar Cells, (DSSCs) Based on Extracted Natural Dyes,” J. Nanomater., vol.  2019, p. 1867271, 2019/04/18 2019, doi: 10.1155/2019/1867271.
  53.  R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. Irwan, “Potential of purple cabbage, coffee, blueberry and turmeric as nature based dyes for dye sensitized solar cell (DSSC),” Energy Procedia, vol. 79, pp. 799–807, 2015.
  54.  A.N.B. Zulkifili, T. Kento, M. Daiki, and A. Fujiki, “The basic research on the dye-sensitized Solar Cells, (DSSC),” J. Clean Energy Technol., vol. 3, no. 5, pp. 382–387, 2015.
  55.  F. Teoli, S. Lucioli, P. Nota, A. Frattarelli, F. Matteocci, A. Di Carlo, E. Caboni, and C. Forni, “Role of pH and pigment concentration for natural dye-sensitized Solar Cells, treated with anthocyanin extracts of common fruits,” J. Photochem. Photobiol. A-Chem., vol. 316, pp. 24–30, 2016.
  56.  E. Maulana and S.H. Pramono, “Dye-Sensitized Solar Cell Based on Anthocyanin Natural Dye,” in 2018 12th South East Asian Technical University Consortium (SEATUC), 2018, vol. 1, pp. 1–5.
  57.  M. Al Emran, A. Amin, and M.F. Hossain, “Fabrication and Performance Test of Dye-Sensized Solar Cell Using Natural Dye Extracted from Basella Alba seeds,” in 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 2018, pp. 365–368.
  58.  D. Zhang et al., “Efficiency and high-temperature response of dye-sensitized Solar Cells, using natural dyes extracted from Calotropis,” in 2018 5th International Conference on Renewable Energy,: Generation and Applications (ICREGA), 2018, pp. 183–187.
  59.  A. Aboulouard et al., “Numerical simulation of dye-sensitized Solar Cells, performance for local natural dyes,” in 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), 2020, pp. 1–4.
  60.  A.M.A. Zakar, S.A. Naman, and S.M. Ahmed, “Improvement of the Efficiency of Dyed Mono Crystalline Silicon Solar Cell by Covering it with Natural Plants Pigments,” in 2019 International Conference on Adv. Sci., and Engineering (ICOASE), 2019, pp. 230–235.
  61.  R. Adel, T. Abdallah, Y. Moustafa, A. Al-sabagh, and H. Talaat, “Effect of polymer electrolyte on the performance of natural dye sensitized Solar Cells,” Superlattices Microstruct., vol. 86, pp. 62–67, 2015.
  62.  C.C.-V. Pablo, R.-R. Enrique, A.R.-G. José, M.-P. Enrique, L.-H. Juan, and N. A.-M. Eddie, “Construction of dye-sensitized Solar Cells, (DSSC) with natural pigments,” Mater. Today Proceedings, vol. 3, no. 2, pp. 194–200, 2016.
  63.  M. Sokolsky, M. Kusko, M. Kaiser, and J. Cirák, “Fabrication and Characterization of Dye-sensitized Solar Cells, Based on Natural Organic Dyes,” Elektroenergetika, vol. 4, no. 2, 2011.
  64.  M.S. Abdel-Latif, M.B. Abuiriban, T.M. El-Agez, and S.A. Taya, “Dye-sensitized Solar Cells, using dyes extracted from flowers, leaves, parks, and roots of three trees,” Dye-sensitized Solar Cells, vol. 5, no. 1, 2015.
  65.  K. Maabong et al., “Natural pigments as photosensitizers for dye-sensitized Solar Cells, with TiO2 thin films,” Int. J. Renew. Energy Res. (IJRER), vol.  5, no. 2, pp. 501–506, 2015.
  66.  E.I.I. Elsay, M.D.A. Allah, A.A.M. Fadol, and S.A.E. Ahmed, “Determination of Energy Gap & Efficiency in Dye Polymer Solar Cells,” Int. J. Current Eng. Technol., vol. 5, no. 4, pp. 2713–2715, 2015.
  67.  A. Pamain, T.P. Pogrebnaya, and C.K. King’ondu, “Natural dyes for solar cell application: UV-Visible spectra and outdoor photovoltaic performance,” Res. J. Appl. Sci. Eng Technol., vol. 3, no. 5, pp. 332–336, 2014.
  68.  I.C. Maurya, P. Srivastava, and L. Bahadur, “Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer,” Opt. Mater., vol. 52, pp.  150–156, 2016.
  69.  G. Calogero and G. Di Marco, “Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized Solar Cells,” Sol. Energy Mater. Solar Cells, vol. 92, no. 11, pp. 1341–1346, 2008.
  70.  G. Dimarco, S. Caramori, S. Cazzanti, R. Argazzi, A. Dicarlo, and C.A. Bignozzi, “Efficient Dye-Sensitized Solar Cells, Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits,” Int. J. Mol. Sci., vol. 11, no. 1, pp. 254–267, 2010.
  71.  G. Calogero, J.-H. Yum, A. Sinopoli, G. Di Marco, M. Grätzel, and M.K. Nazeeruddin, “Anthocyanins and betalains as light-harvesting pigments for dye-sensitized Solar Cells,” Sol. Energy, vol. 86, no. 5, pp. 1563–1575, 2012.
  72.  H. Chang, M.-J. Kao, T.-L. Chen, C.-H. Chen, K.-C. Cho, and X.-R. Lai, “Characterization of natural dye extracted from wormwood and purple cabbage for dye-sensitized Solar Cells,” Int. J. Photoenergy, vol. 2013, pp. 159502, 2013.
  73.  Y. Li, S.-H. Ku, S.-M. Chen, M. A. Ali, and F.M. AlHemaid, “Photoelectrochemistry for red cabbage extract as natural dye to develop a dye-sensitized Solar Cells,” Int. J. Electrochem. Sci., vol. 8, no. 1, pp. 1237–1245, 2013.
  74.  L.K. Singh, T. Karlo, and A. Pandey, “Begonia dye as an efficient anthocyanin sensitizer,” J. Renew. Sustain. Energy, vol. 5, no. 4, p. 043115, 2013.
  75.  H. Chang, H. Wu, T. Chen, K. Huang, C. Jwo, and Y. Lo, “Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea,” J. Alloys Comp., vol. 495, no. 2, pp.  606–610, 2010.
  76.  M. Bazargan, M.M. Byranvand, A.N. Kharat, and L. Fatholahi, “Natural pomegranate juice as photosensitizers for dye-sensitized solar cell (DSSC),” J. Optoelectron. Adv. Mater. Rapid Commun., vol. 5, no. 4, pp. 360–62, 2011.
  77.  S.A. Hasoon, R.M. Al-Haddad, O.T. Shakir, and I.M. Ibrahim, “Natural dye sensitized solar cell based on zinc oxide,” Int. J. Sci. Eng. Res., vol. 6, no. 5, pp. 137–142, 2015.
  78.  X.-F. Wang et al., “Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid,” Chem. Phys.Letters, vol. 423, no. 4‒6, pp. 470–475, 2006.
  79.  A.U. Bhanushali, A.A. Parsola, S. Yadav, and R.P. Nalini, “Spinach and beetroot extracts as sensitizers for ZnO based DSSC,” Int. J. Eng. Sci. Manage. Res., vol. 2, pp. 37–42, 2015.
  80.  N. Gokilamani et al., “Dye-sensitized Solar Cells, with natural dyes extracted from rose petals,” J. Mater. Sci. Mater. Electron., vol. 24, no. 9, pp. 3394–3402, 2013.
  81.  G. Calogero et al., “Efficient dye-sensitized Solar Cells, using red turnip and purple wild sicilian prickly pear fruits,” Int. J. Mol. Sci., vol. 11, no. 1, pp. 254–267, 2010.
  82.  D. Zhang, N. Yamamoto, T. Yoshida, and H. Minoura, “Natural dye sensitized Solar Cells,” Trans. Mater. Res. Soc. Jap., vol. 27, no. 4, pp. 811–814, 2002.
  83.  A.A. Mohammed, A.S.S. Ahmad, and W. A. Azeez, “Fabrication of dye sensitized solar cell based on titanium dioxide (TiO2),” Adv. Mater. Phys. .Chem., vol. 5, no. 09, p. 361, 2015.
  84.  J. Aguilar-Hernández and K. Potje-Kamloth, “Evaluation of the electrical conductivity of polypyrrole polymer composites,” J. Phys. D: Appl. Phys., vol. 34, no. 11, p. 1700, 2001.
  85.  X.-F. Wang, C.-H. Zhan, T. Maoka, Y. Wada, and Y. Koyama, “Fabrication of dye-sensitized Solar Cells, using chlorophylls c1 and c2 and their oxidized forms c1′ and c2′ from Undaria pinnatifida (Wakame),” Chem. Phys. Letters, vol. 447, no. 1‒3, pp.  79–85, 2007.
  86.  S. Yoon et al., “Deprotonated curcumin as a simple and quick available natural dye for dye sensitized Solar Cells,” Energy Sources Part A, vol. 38, no. 2, pp. 183–189, 2016.
  87.  S. Suyitno, T. J. Saputra, A. Supriyanto, and Z. Arifin, “Stability and efficiency of dye-sensitized Solar Cells, based on papaya-leaf dye,” Spectrochim. Acta Part A Mol. Biomol. Spectr., vol. 148, pp. 99–104, 2015.
  88.  M. Tawalbeh, A. Alami, A. Taieb, D. Zhang, A. Alhammadi, and K. Aokal, “Assessment of Calotropis natural dye extracts on the efficiency of dye-sensitized Solar Cells,” Agronomy Res., vol. 16, no. 4, pp. 1569–1579, 2018.
  89.  M.A. Sánchez-García, X. Bokhimi, S. Velázquez Martínez, and A.E. Jiménez-González, “Dye-sensitized Solar Cells, prepared with Mexican pre-hispanic dyes,” J. Nanotechnol., vol. 2018, p.  1236878, 2018.
  90.  M.A. Al-Alwani, H.A. Hasan, N.K.N. Al-Shorgani, and A.B.S. Al-Mashaan, “Natural dye extracted from Areca catechu fruits as a new sensitiser for dye-sensitised solar cell fabrication: Optimisation using D-Optimal design,” Mater. Chem. Phys., vol. 240, p. 122204, 2020.
  91.  J. Zha and M.A. Koffas, “Anthocyanin production in engineered microorganisms,” in Biotechnology of natural products. Springer, 2018, pp. 81–97.
  92.  C. Sandquist and J.L. McHale, “Improved efficiency of betanin-based dye-sensitized Solar Cells,” J. Photochem. Photobiol. A-Chem., vol. 221, no. 1, pp. 90–97, 2011.
  93.  K. Wattananate, C. Thanachayanont, and N. Tonanon, “ORAC and VIS spectroscopy as a guideline for unmodified red–purple natural dyes selection in dye-sensitized Solar Cells,” Sol. Energy, vol. 107, pp. 38–43, 2014.
  94.  N. Li, Y. Lei, L. Guo, T. Yan, and J. Lin, “Remaining useful life prediction based on a general expression of stochastic process models,” IEEE Tran. Ind. Electron., vol. 64, no. 7, pp.  5709–5718, 2017.
  95.  Y. Kubota, K. Kimura, J. Jin, K. Manseki, K. Funabiki, and M. Matsui, “Synthesis of near-infrared absorbing and fluorescing thiophene- fused BODIPY dyes with strong electron-donating groups and their application in dye-sensitised Solar Cells,” New J. Chem., vol. 43, no. 3, pp. 1156–1165, 2019.
  96.  S.-J. Young and K.-W. Yuan, “Self-powered ZnO nanorod ultraviolet photodetector integrated with dye-sensitised solar cell,” J. Electrochem. Soc., vol. 166, no. 12, p. B1034, 2019.
  97.  J.-H. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin, and M. Grätzel, “Panchromatic engineering for dye-sensitized Solar Cells,” Energy Environ. Sci., vol. 4, no. 3, pp. 842–857, 2011.
  98.  D.W. Ayele and W.-N. SU, “Organometallic compounds for dye sensitized solar cells, (DSSC),” Adv. Organomet. Chem. Catal. 2014, p. 503.
  99.  R. Kumar, A.K. Sharma, V.S. Parmar, A.C. Watterson, K.G. Chittibabu, J. Kumar, and L.A. Samuelson, “Flexible, dye-sensitized nanocrystalline Solar Cells, employing biocatalytically synthesized polymeric electrolytes,” Chem. Mater., vol. 16, no. 23, pp. 4841–4846, 2004.
  100.  C.-Y. Chien and B.-D. Hsu, “Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer,” Sol. Energy, vol. 98, pp. 203–211, 2013.
  101.  H. Zhou, L. Wu, Y. Gao, and T. Ma, “Dye-sensitized Solar Cells, using 20 natural dyes as sensitizers,” J. Photochem. Photobiol. A-Chem., vol. 219, no. 2‒3, pp. 188–194, 2011.
  102.  A. Michael, B. Adenike, O. Surukite, A. Ibrahim, and B. Henry, “Construction of Dye Sensitized Solar Cell with Bouganvilla, Cordia Sebestena and Talinium Triangulare Flower,” J. Nat. Sci. Res., vol. 3, no. 5, pp. 13–24, 2013.
  103.  R. Grünwald and H. Tributsch, “Mechanisms of instability in Ru-based dye sensitization Solar Cells,” J. Phys. Chem. B, vol.  101, no. 14, pp. 2564–2575, 1997.
  104.  K. Prabu, P. Anbarasan, and S. Ranjitha, “Natural dye-sensitized Solar Cells, (NDSSCs) from opuntia prickly pear dye using ZnO doped TiO2 nanoparticles by sol-gel method,” Int. J. Eng. Res. Appl., vol. 4, no. 7, pp.140‒149, 2014.
  105.  S. Ananth, P. Vivek, T. Arumanayagam, and P. Murugakoothan, “Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized Solar Cells,” Spectrochim. Acta Part A Mol. Biomol. Spectr., vol. 128, pp. 420–426, 2014.
  106.  K. Wongcharee, V. Meeyoo, and S. Chavadej, “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Sol. Energy Mater. Solar Cells, vol. 91, no. 7, pp. 566–571, 2007.
  107.  K.-H. Park et al., “Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized Solar Cells,” Spectrochim. Acta Part A Mol. Biomol. Spectr., vol. 128, pp. 868–873, 2014.
  108.  M. Alhamed, A.S. Issa, and A.W. Doubal, “Studying of natural dyes properties as photo-sensitizer for dye sensitized Solar Cells, (DSSC),” J. Electron Dev., vol. 16, no. 11, pp.  1370–1383, 2012.
  109.  E.P. Enriquez and A.C.M. San Esteban, “Graphene–anthocyanin mixture as photosensitizer for dye-sensitized solar cell,” Sol. Energy, vol. 98, pp. 392–399, 2013.
  110.  K.E. Jasim, S. Al-Dallal, and A.M. Hassan, “Natural dye-sensitised photovoltaic cell based on nanoporous TiO2,” Int. J. Nanopart., vol. 4, no. 4, pp. 359–368, 2011.
  111.  S. Casaluci, M. Gemmi, V. Pellegrini, A. Di Carlo, and F. Bonaccorso, “Graphene-based large area dye-sensitized solar cell modules,” Nanoscale, vol. 8, no. 9, pp. 5368–5378, 2016.
  112.  V. Shanmugam, S. Manoharan, S. Anandan, and R. Murugan, “Performance of dye-sensitized Solar Cells, fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers,” Spectrochim. Acta Part A Mol. Biomol. Spectr., vol. 104, pp. 35–40, 2013.
  113.  W. Yang et al., “Construction of efficient counter electrodes for dye-sensitized Solar Cells,: Fe2O3 nanoparticles anchored onto graphene frameworks,” Carbon, vol. 96, pp. 947–954, 2016.
  114.  H. Tributsch, “Reaction of excited chlorophyll molecules at electrodes and in photosynthesis,” Photochem. Photobiol., vol. 16, no. 4, pp. 261–269, 1972.
  115.  A. Hernández-Martínez, S. Vargas, M. Estevez, and R. Rodríguez, “Dye-sensitized Solar Cells, from extracted bracts bougainvillea betalain pigments,” in 1st International Congress on Instrumentation and Applied Sciences, 2010, vol. 1, p. 15.
  116.  A. Dumbravă et al., “Dye-sensitized Solar Cells, based on nanocrystalline TiO2 and natural pigments,” J. Optoelectron. Adv. Mater., vol. 10, no. 11, pp. 2996–3002, 2008.
  117.  H. Chang and Y.-J. Lo, “Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized Solar Cells,” Sol. Energy, vol. 84, no. 10, pp. 1833–1837, 2010.
  118.  S.A. Hussain, “Development of dye sensitized Solar Cells, using Botuje green leaves (Jathopha Curcas Linn),” Sci. J. Phys., vol. 2013, 2013.
  119.  K.A. Aduloju, M.B. Shitta, and J. Simiyu, “Effect of extracting solvents on the stability and performances of dye-sensitized solar cell prepared using extract from Lawsonia Inermis,” Fundamental J. Modern Phys., vol. 1, no. 2, pp. 261–268, 2011.
  120.  R. Singh, N.A. Jadhav, S. Majumder, B. Bhattacharya, and P.K. Singh, “Novel biopolymer gel electrolyte for dye-sensitized solar cell application,” Carbohydr. Polym., vol. 91, no. 2, pp.  682–685, 2013.
  121.  S.A. Taya, T.M. El-Agez, H.S. El-Ghamri, and M. S. Abdel-Latif, “Dye-sensitized Solar Cells, using fresh and dried natural dyes,” Int. J. Mater. Sci. Appl., vol. 2, no. 2, pp. 37–42, 2013.
  122.  K. Moustafa, M. Rekaby, E. El Shenawy, and N. Khattab, “Green dyes as photosensitizers for dye-sensitized Solar Cells,” J. Appl. Sci. Res., vol. 8, no. 8, pp. 4393–4404, 2012.
  123.  M. Al Amin and M. Hossain, “Fabrication, characterization and performance analysis of dye-sensitized solar cell using natural dye,” 1991.
  124.  S. Suhaimi, M.M. Shahimin, Z. Alahmed, J. Chyský, and A. Reshak, “Materials for enhanced dye-sensitized solar cell performance: Electrochemical application,” Int. J. Electrochem. Sci, vol. 10, no. 4, pp. 2859–2871, 2015.
  125.  A.R. Hernandez-Martinez, M. Estevez, S. Vargas, F. Quintanilla, and R. Rodríguez, “Natural pigment-based dye-sensitized Solar Cells,” J. Appl. Res.Technol., vol. 10, no. 1, pp. 38–47, 2012.
  126.  A.K. Alaba, “Utilization of Natural Morinda lucida as photosensitizers for dyesensitized solar cell,” Arch. Appl. Sci. Res., vol. 4, no. 1, pp. 419–425, 2012.
  127.  K.H. Park et al., “Photochemical properties of dye-sensitized solar cell using mixed natural dyes extracted from Gardenia Jasminoide Ellis,” J. Electroanal. Chem., vol.  689, pp. 21–25, 2013.
Przejdź do artykułu

Autorzy i Afiliacje

Cherry Bhargava
1
ORCID: ORCID
Pardeep Kumar Sharma
2
ORCID: ORCID

  1. Department of Electronics and Telecommunication Engineering, Symbiosis International (Deemed University), Pune, Maharashtra, India-412115
  2. Stratjuris Partners, Westport, Baner, Pune, Maharashtra, India-411045
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article presents the method of magnetron sputtering for the deposition of conductive emitter coatings in semiconductor structures. The layers were applied to a silicon substrate. For optical investigations, borosilicate glasses were used. The obtained layers were subjected to both optical and electrical characterisation, as well as structural investigations. The layers on silicon substrates were tested with the four-point probe to find the dependence of resistivity on the layer thickness. The analysis of the elemental composition of the layer was conducted using a scanning electron microscope equipped with an EDS system. The morphology of the layers was examined with the atomic force microscope (AFM) of the scanning electron microscope (SEM) and the structures with the use of X-ray diffraction (XRD). The thickness of the manufactured layers was estimated by ellipsometry. The composition was controlled by selecting the target and the conditions of the application, i.e. the composition of the plasma atmosphere and the power of the magnetrons. Based on the obtained results, this article aims to investigate the influence of the manufacturing method and the selected process parameter on the optical properties of thin films, which should be characterised by the highest possible value of the transmission coefficient (>85–90%) and high electrical conductivity.
Przejdź do artykułu

Bibliografia

  1.  L. Żukowska, J. Mikuła, M. Staszuk, and M. Musztyfaga-Staszuk, “Structure And Properties Of PVD Coatings Deposited On Cermets,” Arch. Metall. Mater., vol. 60, no. 2, pp. 727–733, 2015, doi: 10.1515/amm-2015-0198.
  2.  M. Staszuk et al., “Investigations of TiO2, Ti/TiO2, and Ti/TiO2/Ti/TiO2 coatings produced by ALD and PVD methods on Mg-(Li)-Al-RE alloys substrates,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. 137549, 2021 (in print), doi: 10.24425/bpasts.2021.137549.
  3.  Y.-S. Cho, M. Han, and S. H. Woo, “Electrospinning of Antimony Doped Tin Oxide Nanoparticle Dispersion for Transparent and Conductive Films,” Arch. Metall. Mater., vol. 65, no. 4, pp.  1345–1350, 2020, doi: 10.24425/amm.2020.133697.
  4.  R.A. Maniyara, V.K. Mkhitaryan, T.L. Chen, D.S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2%) and electrical resistance,” Nat. Commun., vol. 7, pp. 13771, 2016, doi: 10.1038/ncomms13771.
  5.  M. Kuc et al., “ ITO layer as an optical confinement for nitride edge-emitting lasers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, 2020, doi: 10.24425/bpasts.2020.131834.
  6.  Y. Cui and C.M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, vol. 291, pp. 851–853, 2001, doi: 10.1126/science.291.5505.851.
  7.  J. Kryłow, J. Oleński, Z. Sawicki, and A. Tumański, “Doping of semiconductors, Technological processes in semiconductor electronics,” Scientific and Technical Publishing House, Warsaw 1980 [in Polish].
  8.  Ş. Ţălu, S. Kulesza, M. Bramowicz, K. Stępień and D. Dastan, “Analysis of the Surface Microtexture of Sputtered Indium Tin Oxide Thin Films,” Arch. Metall. Mater., vol. 66, no. 2, pp.  443–450, 2021, doi: 10.24425/amm.2021.135877.
  9.  Y.S. Hsu and S.K. Gandhi, “The Effect of Phosphorus Doping on Tin Oxide Films Made by the Oxidation of Phosphine and Tetramethyltin II. Electrical Properties J. Electrochem. Soc. II,” Sol. State Sci. Technol., vol. 127, p. 1592, 1980.
  10.  T. Nakahara and H. Koda, Chemical Sensor Technology. Ed., N. Emazoe,” Elsevier, New York, 1991, vol. 3, p. 19.
  11.  S.-J. Hong, S.-H. Song, B.J. Kim, J.-Y. Lee, and Y.-S Kim, “ITO Nanoparticles Reused from ITO Scraps and Their Applications to Sputtering Target for Transparent Conductive Electrode Layer,” Nano Converg., vol. 4, no 23, p. 23, 2017.
  12.  Q. Li, E. Gao, and A.X. Wang, “Ultra-Compact and Broadband Electro-Absorption Modulator Using an Epsilon-near-Zero Conductive Oxide,” Photonics Res., vol. 6, no. 4, pp. 277–281, 2018, doi: 10.1364/PRJ.6.000277.
  13.  K. Ellmer, “Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes,” Nat. Photonics, vol. 6, pp. 809–817, 2012, doi: 10.1038/nphoton.2012.282.
  14.  Q. Li et al., “3D ITO-Nanowire Networks as Transparent Electrode for All-Terrain Substrate,” Sci. Rep., vol.  9, no. 4983, 2019.
  15.  C. Guillén and J. Herrero, “Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates,” Thin Solid Films, 480–481, pp. 129–132, 2005, doi: 10.1016/j.tsf.2004.11.040.
  16.  C. Guillén and J. Herrero, “Polycrystalline growth and recrystallisation process in sputtering ITO thin films,” Thin Solid Films, vol. 510, pp. 260–264, 2006.
  17.  H. Morikawa and M. Fujita, “Crystallisation and electrical property change on the annealing of amorphous indium-oxide and indium tin oxide films,” Thin Solid Films, vol. 359, pp. 61–67, 2000.
  18.  F. Kurdesau, G. Khripunov, A.F da Cunha, M Kaelin, and A.N Tiwari, “Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature,” J. Non-Crystall. Solids, vol. 352, pp. 1466–1470, 2006, doi: 10.1016/j.jnoncrysol.2005.11.088.
  19.  C.L. Tien, H.Y. Lin, C.K. Chang, and C.J. Tang, “Effect of Oxygen Flow Rate on the Optical, Electrical, and Mechanical Properties of DC Sputtering ITO Thin Films,” Adv. Condens. Matter Phys., 2019, p. 2647282, 2019.
  20.  J. Txintxurreta, E. G-Berasategui, R. Ortiz, O. Hernández, L. Mendizábal, and J. Barriga, “Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters,” Coatings, vol. 11, p.  92, 2021, doi: 10.3390/coatings11010092.
  21.  R.K. Tyagi, P. Saxena, A. Vashisth, and S. Mehndiratta, “PVD based thin film deposition methods and characterisation/ property of different compositional coatings- a critical analysis,” Materials Today: Proceedings 2nd International Conference, vol.  38, pp. 259–264, 2020.
  22.  P. Sawicka-Chudy et al., “Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices, AIP Advances, vol. 9, p. 055206, 2019, doi: 10.1063/1.5093037.
  23.  B. Wicher et al., “Structure and Electrical Resistivity Dependence of Molybdenum Thin Films Deposited by DC Modulated Pulsed Magnetron Sputtering,” Arch. Metall. Mater., vol. 63, no. 3, pp. 1339–1344, 2018, doi: 10.24425/123809.
  24.  L.J. Meng, E. Liang, J. Gao, V. Teixeira, and M.P. dos Santos, “Study of indium tin oxide thin films deposited on acrylics substrates by ion beam assisted deposition technique,” J. Nanosci. Nanotechnol., vol. 9, pp. 4151–4155, 2009, doi: 10.1166/jnn.2009.m24.
  25.  J.C. Manifacier, M. De Murcia, J.P. Fillard, and E. Vicario, “Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure,” Thin Solid Films, vol. 41, pp. 127–144, 1977.
  26.  M. Iftikhar, I.M. Ali, and M.A. Al-Jenabi, “Structural and Optical Properties of In2O3 and Indium Tin Oxide Thin Films,” J. Unive. Anbar Pure Sci., vol. 11, no.1, pp.  39–46, 2017.
  27.  H. Kim et al., “Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices,” J. Appl. Phys., vol. 86, pp. 6451–6461, 1999, doi: 10.1063/1.371708.
  28.  N. Nosidlak, “Application of polymer systems as materials in photovoltaic cells and electroluminescent diodes”. PhD Thesis, Krakow 2013.
  29.  L.F.J. Piper et al., “In2O3 is found about 2.8 eV below the Fermi level,” Appl. Phys. Lett., vol. 94, p. 022105, 2009.
Przejdź do artykułu

Autorzy i Afiliacje

Małgorzata Musztyfaga-Staszuk
1
Dušan Pudiš
2
Robert Socha
3
Katarzyna Gawlińska-Nęcek
4
Piotr Panek
4

  1. Silesian University of Technology, Welding Department, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Faculty of Faculty of Electrical Engineering and Information Technology, Department of Physics, Zilina, Slovakia
  3. Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland
  4. Institute of Metallurgy and Materials Science PAS, ul. Reymonta 25, 30-059 Krakow, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The above-threshold operation of a Fabry-Perot laser with a nonlinear PT (parity time) mirror is investigated. For the first time, the analysis accounts for gain saturation of an active medium as well as gain and loss saturation effects in the PT mirror. The obtained laser output intensity characteristics have been demonstrated as a function of various PT mirror parameters such as: the ratio of the PT structure period to laser operating wavelength, number of PT mirror primitive cells, and gain and loss saturation intensities of the PT mirror gain and loss layers. Two functional configurations of the laser have been considered: laser operating as a discrete device, and as a component of an integrated circuit. It has been shown that, in general, the laser operation depends on the PT mirror orientation with respect to the active medium of the laser. Moreover, when the laser radiation is outcoupled through the PT mirror to the free space, bistable operation is possible, when losses of the mirror’s loss layer saturate faster than gain of the gain layer. Furthermore, for a given saturation intensity of the mirror loss layers, the increase of the saturation intensity of the mirror gain layers causes increasing output intensity, i.e., the PT mirror additionally amplifies the laser output signal.
Przejdź do artykułu

Bibliografia

  1. C.M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry,” Phys. Rev. Lett., vol. 80, no. 24, pp. 5243–5246, Jun. 1998, doi: 10.1103/PhysRevLett.80.5243.
  2. Kulishov, J.M. Laniel, N. Bélanger, J. Azaña, and D.V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express, vol. 13, no. 8, pp. 3068–3078, Apr. 2005, doi: 10.1364/OPEX.13.003068.
  3. Kulishov, B. Kress, and H.F. Jones, “Novel optical characteristics of a Fabry-Perot resonator with embedded PT-symmetrical grating,” Opt. Express, vol. 22, no. 19, pp. 23164–23181, Sep. 2014, doi: 10.1364/OE.22.023164.
  4. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett., vol. 106, no.  21, p. 213901, May 2011, doi: 10.1103/PhysRevLett.106.213901.
  5. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, and Z.H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett., vol. 100, no. 10, p. 103904, Mar. 2008, doi: 10.1103/PhysRevLett.100.103904.
  6. M.C. Zheng, D.N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A, vol. 82, no. 1, p. 010103, Jul. 2010, doi: 10.1103/PhysRevA.82.010103.
  7. Sun, W. Tan, H. Li, J. Li, and H. Chen, “Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition,” Phys. Rev. Lett., vol. 112, no. 14, p. 143903, Apr. 2014, doi: 10.1103/PhysRevLett.112.143903.
  8. El-Ganainy, K.G. Makris, D.N. Christodoulides, and Z.H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett., vol. 32, no. 17, pp. 2632–2634, Sep. 2007, doi: 10.1364/OL.32.002632.
  9. Ge and R. El-Ganainy, “Nonlinear Modal Interactions in PT-Symmetric Lasers,” in Frontiers in Optics 2016, 2016, p.  JW4A.186, doi: 10.1364/FIO.2016.JW4A.186.
  10. Feng, J. Ma, Z. Yu, and X. Sun, “Circular Bragg lasers with radial PT symmetry: design and analysis with a coupled-mode approach,” Photonics Res., vol. 6, no. 5, pp. A38–A42, May 2018, doi: 10.1364/PRJ.6.000A38.
  11. Botey, W.W. Ahmed, J. Medina, R. Herrero, and K. Staliunas, “Non-Hermitian Broad Aperture Semiconductor Lasers Based on PT-Symmetry,” in 21st International Conference on Transparent Optical Networks (ICTON 2019), 2019, pp. 1–4, doi: 10.1109/ ICTON.2019.8840291.
  12. Mossakowska-Wyszyńska, P. Niedźwiedziuk, P. Witoński, and P. Szczepański, “Analysis of Light Generation in Laser with PT- Symmetric Mirror,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), 2018, p. JTu5A.50, doi: 10.1364/BGPPM.2018.JTu5A.50.
  13. Zhu, Y. Zhao, J. Fan, and L. Zhu, “Modal Gain Analysis of Parity-Time-Symmetric Distributed Feedback Lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 5, pp. 5–11, Sep.  2016, doi: 10.1109/JSTQE.2016.2537209.
  14. Phang, A. Vukovic, H. Susanto, T.M. Benson, and P. Sewell, “Ultrafast optical switching using parity–time symmetric Bragg gratings,” J. Opt. Soc. Am. B, vol. 30, no. 11, pp. 2984‒2991, 2013, doi: 10.1364/JOSAB.30.002984.
  15. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Impact of dispersive and saturable gain/loss on bistability of nonlinear parity–time Bragg gratings,” Opt. Lett., vol. 39, no. 9, pp. 2603–2606, May 2014, doi: 10.1364/OL.39.002603.
  16. Liu, X.-T. Xie, C.-J. Shan, T.-K. Liu, R.-K. Lee, and Y. Wu, “Optical bistability in nonlinear periodical structures with PT-symmetric potential,” Laser Phys., vol. 25, no. 1, p. 015102, 2015, doi: 10.1088/1054-660X/25/1/015102.
  17. Mukherjee and P.C. Jana, “Controlled optical bistability in parity-time-symmetric coupled micro-cavities: Possibility of all-optical switching,” Physica E Low Dimens. Syst. Nanostruct., vol. 117, p. 113780, Mar. 2020, doi: 10.1016/j.physe.2019.113780.
  18. D.R. Paschotta, “Pockels Effect,” [Online]. Available: www.rp-photonics.com/pockels_effect.html. [Accessed: 11. Dec. 2020].
  19. Kamp, J. Hofmann, A. Forchel, and S. Lourdudoss, “Ultrashort InGaAsP/InP lasers with deeply etched Bragg mirrors,” Appl. Phys. Lett., vol. 78, no. 26, pp. 4074–4075, Jun. 2001, doi: 10.1063/1.1377623.
  20. Happach, et al., “Temperature-Tolerant Wavelength-Setting and -Stabilization in a Polymer-Based Tunable DBR Laser,” J. Light. Technol., vol. 35, no. 10, pp. 1797–1802, May 2017, doi: 10.1109/JLT.2017.2652223.
  21. Smit, K. Williams, and J. van der Tol, “Past, present, and future of InP-based photonic integration,” APL Photonics, vol. 4, no. 5, p. 050901, May 2019, doi: 10.1063/1.5087862.
  22. F.M. Soares, M. Baier, T. Gaertner, N. Grote, M. Moehrle, T. Beckerwerth, P. Runge, and M. Schell, “InP-Based Foundry PICs for Optical Interconnects,” Appl. Sci., vol. 9, no. 8, p.  1588, Apr. 2019, doi: 10.3390/app90815a88.
  23. NeoPhotonics Corporation, “Indium Phosphide PICs,” [Online]. Available: www.neophotonics.com/technology/indium-phosphide-pics/. [Accessed: 23. May 2019].
  24. Phang, Theory and numerical modelling of parity-time symmetric structures for photonics, PhD thesis, University of Nottingham, 15 Jul. 2016. [Online]. Available: eprints.nottingham.ac.uk/32596/ [Accessed: 30. Nov. 2018]
  25. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of Nonlinear Loss and Gain in Multilayer PT-Symmetric Bragg Grating,” IEEE J. Quantum Electron., vol. 53, no. 6, pp. 1–11, Dec. 2017, doi: 10.1109/JQE.2017.2761380.
  26. O.V. Shramkova and G.P. Tsironis, “Resonant Combinatorial Frequency Generation Induced by a PT-Symmetric Periodic Layered Stack,” IEEE J. Sel. Top. QE., vol. 22, no. 5, p. 5000307, Sep./Oct. 2016, doi: 10.1109/JSTQE.2015.2505139.
  27. Haug and L. Banyai, Red., Optical Switching in Low-Dimensional Systems. Plenum Press, New York, Springer US, 1989, pp. 35‒48.
  28. Garmire and A. Kost, Red., Nonlinear Optics in Semiconductors I: Nonlinear Optics in Semiconductor Physics I, 1st edition. Academic Press US, 1998, pp. 364‒371.
Przejdź do artykułu

Autorzy i Afiliacje

Agnieszka Mossakowska-Wyszyńska
1
ORCID: ORCID
Piotr Witoński
1
ORCID: ORCID
Paweł Szczepański
1 2
ORCID: ORCID

  1. Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  2. National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article discusses the applicability of a novel method to determine horizontal curvature of the railway track axis based on results of mobile satellite measurements. The method is based on inclination angle changes of a moving chord in the Cartesian coordinate system. In the presented case, the variant referred to as the method of two virtual chords is applied. It consists in maneuvering with only one GNSS (Global Navigation Satellite System) receiver. The assumptions of the novel method are formulated, and an assessment of its application in the performed campaign of mobile satellite measurements is presented. The shape of the measured railway axis is shown in the national spatial reference system PL-2000, and the speed of the measuring trolley during measurement is calculated based on the recorded coordinates. It has been observed that over the test section, the curvature ordinates differ from the expected waveform, which can be caused by disturbances of the measuring trolley trajectory. However, this problem can easily be overcome by filtering the measured track axis ordinates to obtain the correct shape – this refers to all track segments: straight sections, circular arcs and transition curves. The virtual chord method can also constitute the basis for assessing the quality of the recorded satellite signal. The performed analysis has shown high accuracy of the measuring process.
Przejdź do artykułu

Bibliografia

  1. British railway track design, construction and maintenance. 6th ed., The Permanent Way Institution, London, UK, 1993.
  2. 883.2000 DB_REF-Festpunktfeld, DB Netz AG, Berlin, Germany, 2016.
  3. Railway applications—Track—Track alignment design parameters—Track gauges 1435 mm and wider—Part 1: Plain line, EN 13803-1, CEN, Brussels, Belgium, 2010.
  4. Code of federal regulations title 49 transportation, US Government Printing Office, Washington, DC, USA, 2008.
  5. Standard: Railway Surveying, Version 1.0, T HR TR 13000 ST, NSW Government (Transport for NSW), Sydney, Australia, 2016.
  6. NR/L3/TRK/0030 NR_Reinstatement of Absolute Track Geometry (WCRL Routes), no. 1, NR, London, UK, 2008.
  7. Standardy Techniczne – Szczegółowe warunki techniczne dla modernizacji lub budowy linii kolejowych do predkości Vmax   200 km/h (dla taboru konwencjonalnego) / 250 km/h (dla taboru z wychylnym pudłem) – TOM I – DROGA SZYNOWA – Załącznik ST-T1_A6: Układy geometryczne torów, PKP Polskie Linie Kolejowe, Warszawa, 2018.
  8.  L. Wang et al., “Validation and assessment of multi-GNSS real-time Precise Point Positioning in simulated kinematic mode using IGS real-time service,” Remote. Sensing, vol. 10, pp. 1‒19, 2018, doi: 10.3390/rs10020337.
  9.  Y. Quan, and L. Lau, “Development of a trajectory constrained rotating arm rig for testing GNSS kinematic positioning,” Measurement, vol. 140, pp. 479–485, 2019, doi: 10.1016/j.measurement.2019.04.013.
  10.  R.M. Alkan, “Cm-level high accurate point positioning with satellite-based GNSS correction service in dynamic applications,” J. Spatial Sci., vol. 66, no. 2, pp. 351‒359, 2019, doi: 10.1080/14498596.2019.1643795.
  11.  W. Domski, and A. Mazur, “Input-output decoupling for a 3D free-floating satellite with a 3R manipulator with state and input disturbances,” Bull. Pol. Acad. Sci. Tech. Sci., vol.  67, no. 6, pp. 1031‒1039, 2019, doi: 10.24425/bpasts.2019.130885.
  12.  S. Wu et al., ”Improving ambiguity resolution success rate in the joint solution of GNSS-based attitude determination and relative positioning with multivariate constraints,” GPS Solutions, vol. 24, no. 1, article number: 31, 2020, doi: 10.1007/s10291-019-0943-y.
  13.  W. Koc and C. Specht, “Application of the Polish active GNSS geodetic network for surveying and design of the railroad,” in Proc. First International Conference on Road and Rail Infrastructure – CETRA 2010, Opatija, Croatia, Univ. of Zagreb, 2010, pp. 757‒762.
  14.  W. Koc and C. Specht, “Selected problems of determining the course of railway routes by use of GPS network solution,” Arch. Transp., vol. 23, no. 3, pp. 303‒320, 2011.
  15.  W. Koc, C. Specht, and P. Chrostowski, “Finding deformation of the straight rail track by GNSS measurements,” Annu. Navig., no. 19, part 1, pp. 91‒104, 2012, doi: 10.2478/v10367-012-0008-6.
  16.  W. Koc, C. Specht, P. Chrostowski, and J. Szmagliński, “Analysis of the possibilities in railways shape assessing using GNSS mobile measurements,” MATEC Web Conf., vol. 262, no. 4, p.  11004(1‒6), 2019, doi: 10.1051/matecconf/201926211004.
  17.  W. Koc, C. Specht, J. Szmagliński, and P. Chrostowski, “A method for determination and compensation of a cant influence in a track centerline identification using GNSS methods and inertial measurement,” Appl. Sci., vol. 9, no. 20, p.  4347(1‒16), 2019, doi: 10.3390/ app9204347.
  18.  C. Specht and W. Koc, “Mobile satellite measurements in designing and exploitation of rail roads,” Transp. Res. Procedia, vol. 14, pp. 625‒634, 2016, doi: 10.1016/j.trpro.2016.05.310.
  19.  C. Specht, W. Koc, P. Chrostowski, and J. Szmagliński, “The analysis of tram tracks geometric layout based on mobile satellite measurements,” Urban Rail Transit, vol. 3, no. 4, pp.  214‒226, 2017, doi: 10.1007/s40864-017-0071-3.
  20.  C. Specht, W. Koc, P. Chrostowski, and J. Szmagliński, “Accuracy assessment of mobile satellite measurements in relation to the geometrical layout of rail tracks,” Metrol. Meas. Syst., vol. 26, no. 2, pp. 309‒321, 2019, doi: 10.24425/mms.2019.128359.
  21.  P. Dąbrowski et al., “Installation of GNSS receivers on a mobile platform – methodology and measurement aspects,” Scientific Journals of the Maritime University of Szczecin, vol. 60, no.  132, pp. 18‒26, 2019, doi: 10.3390/jmse8010018.
  22.  A. Wilk et al., “Research project BRIK: development of an innovative method for determining the precise trajectory of a railway vehicle,” Transp. Oveview – Przegląd Komunikacyjny, vol. 74, no. 7, pp. 32‒47, 2019, doi: 10.35117/A_ENG_19_07_04.
  23.  L. Marx, “Satellitengestützte Gleisvermessung – auch beim Oberbau,” EI – Eisenbahningenieur, vol. 58, no. 6, pp. 9‒14, 2007.
  24.  Y. Naganuma, T. Yasukuni, and T. Uematsu, “Development of an inertial track geometry measuring trolley and utilization of its high- precision data,” Int. J. Transp. Dev. Integr., vol. 3, no. 3, pp. 271–285, 2019, doi: 10.2495/TDI-V3-N3-271-285.
  25.  C. Qijin et al., “A railway track geometry measuring trolley system based on aided INS,” Sensors, vol. 18, no. 2, p. 538, 2018, doi: 10.3390/ s18020538.
  26.  T. Strübing, “Kalibrierung und Auswertung von lasertriangulations-basierten Multisensorsystemen am Beispiel des Gleisvermessungs- systems RACER II,” Schriften des Instituts für Geodäsie der Universität der Bundeswehr München, Dissertationen, Heft 91, 2015.
  27.  T. Weinold and A. Grimm-Pitzinger, “Die Lagerung der Gleisvermessungen der ÖBB,” Vermessung & Geoinformation, vol. 7, no. 3, pp. 348–352, 2012.
  28. Rail design in Civil 3D, Autodesk, San Rafael, USA, 2019.
  29. An application for preliminary and detailed 3D design of rail infrastructure V8i PL, Bentley Systems, Exton, USA, 2019.
  30. BIM-ready railway design solution, CGS Labs, Ljubljana, Slovenia, 2018.
  31.  W. Koc, “The method of determining horizontal curvature in geometrical layouts of railway track with the use of moving chord,” Arch. Civil Eng., vol. 66, no. 4, pp. 579–591, 2020, doi: 10.24425/ace.2020.135238.
  32.  W. Koc, “Design of rail-track geometric systems by satellite measurement,” J. Transp. Eng., vol. 138, no. 1, pp. 114‒122, 2012, doi: 10.1061/(ASCE)TE.1943-5436.0000303.
  33.  A. Wilk, C. Specht, K. Karwowski et al., “Correction of determined coordinates of railway tracks in mobile satellite measurements,” Diagnostyka, vol. 21, no. 3, pp. 77‒85, 2020, doi: 10.29354/diag/125626.
  34.  A. Wilk et al., “Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle,” Measurement, vol. 175, p. 109016, 2021, doi: 10.1016/j. measurement.2021.109016.
  35.  A. Wilk, W. Koc, C. Specht, S. Judek et al., “Digital filtering of railway track coordinates in mobile multi–receiver GNSS measurements,” Sensors, vol. 20, p. 5018(1–20), 2020, doi: 10.3390/s20185018.
  36.  C. Specht et al., “Verification of GNSS measurements of the railway track using standard techniques for determining coordinates,” Remote Sensing, vol. 12, p. 2874(1‒24), 2020, doi: 10.3390/rs12182874.
Przejdź do artykułu

Autorzy i Afiliacje

Władysław Koc
1
ORCID: ORCID
Andrzej Wilk
1
ORCID: ORCID
Cezary Specht
2
Krzysztof Karwowski
1
Jacek Skibicki
1
Krzysztof Czaplewski
2
Slawomir Judek
1
Piotr Chrostowski
3
Jacek Szmagliński
3
Paweł Dąbrowski
2
ORCID: ORCID
Mariusz Specht
2
Sławomir Grulkowski
3
Roksana Licow
3

  1. Gdańsk University of Technology, Faculty of Electrical and Control Engineering, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  2. Gdynia Maritime University, Faculty of Navigation, al. Jana Pawła II 3, 81-345 Gdynia, Poland
  3. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The connection of renewable energy sources with significant nominal power (in the order of MW) to the medium-voltage distribution grid affects the operating conditions of that grid. Due to the increasing number of installed renewable energy sources and the limited transmission capacity of medium-voltage networks, the cooperation of these energy sources is becoming increasingly important. This article presents the results of a six-year study on a 2 MW wind power plant and a 1 MW photovoltaic power plant in the province of Warmia and Mazury, which are located a few kilometers away from each other. In this study, active energy, currents, voltages as well as active, reactive, and apparent power and higher harmonics of currents and voltages were measured. The obtained results show the parameters determining the power quality at different load levels. Long-term analysis of the operation of these power plants in terms of the generated electricity and active power transmitted to the power grid facilitated estimating the repeatability of active energy production and the active power generated in individual months of the year and times of day by a wind power plant and a photovoltaic power plant. It also allowed us to assess the options of cooperation between these energy sources. It is important, not only from a technical but also from an economic point of view, to determine the nominal power of individual power plants connected to the same connection point. Therefore, the cooperation of two such power plants with the same nominal power of 2 MW was analyzed and the economic losses caused by a reduction in electricity production resulting from connection capacity were estimated.
Przejdź do artykułu

Bibliografia

  1.  C. Warren, “Feature — Wind, Sun, and Water,” EPRI Journal, no. 3, pp. 8–11, May/June 2016.
  2.  The Construction Law Act of 7 July 1994. Dz.U. 2019, item 1186.
  3.  The Energy Law Act of 10 April 1997. Dz.U. 1997, no. 54, item 348 as amended.
  4.  The Environmental Protection Law Act of 27 April 2001. Dz.U. 2001, no. 62, item 627.
  5.  The Act on Providing Information about the Environment and its Protection, Public Participation in the Environmental Protection and on Environmental Impact Assessment of 3 October 2008. Dz.U. 2008, no. 199, item 1227.
  6.  The Regulation of the Council of Ministers of 10 September 2019 on projects which may significantly affect the environment. Dz.U. 2019, item 1839.
  7.  The Act amending the Renewable Energy Sources Act and Some Other Acts of 7 June 2018, Dz.U. 2018, item 1276.
  8.  The Renewable Energy Sources Act of 20 February 2015. Dz.U. 2015, item 478 as amended.
  9.  H. Ritchie and M. Roser, “Renewable Energy.” [Online]. Available: https://ourworldindata.org/renewable-energy. [Accessed: 15 Nov. 2020].
  10.  G. Chicco, J. Schlabbach, and F. Spertino, “Characterisation and assessment of the harmonic emission of grid-connected photovoltaic systems,” in Proc. IEEE Russia Power Tech, 2005, pp.  1–7, doi: 10.1109/PTC.2005.4524744.
  11.  L. Liu, H. Li, Y. Xue, and W. Liu, “Reactive power compensation and optimization strategy for grid-interactive cascaded photovoltaic systems,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 188–202, 2015, doi: 10.1109/TPEL.2014.2333004.
  12.  S. Mishra and P.K. Ray, “Power quality improvement using photovoltaic fed DSTATCOM based on JAYA optimization,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1672–1680, 2016, doi: 10.1109/TSTE.2016.2570256.
  13.  A. Lange and M. Pasko, “Selected aspects of photovoltaic power station operation in the power system,” Przegląd Elektrotechniczny, vol. 96, no. 5, pp. 30–34, 2020, doi: 10.15199/48.2020.05.05.
  14.  H. Serghine, R. Merahi, R. Chenni, and D. Buła, “Combined operation of photovoltaic and active power filter system connected to nonlinear load,” Roum. Sci. Techn. Électrotechn. Énerg., vol. 64, no. 4, pp. 371–376, 2019, doi: https://www.researchgate.net/publication/342079034.
  15.  N. Mansouri, A. Lashab, D. Sera, J.M. Guerrero, and A. Cherif, “Large photovoltaic power plants integration: A review of challenges and solutions,” Energies, vol. 12, no. 19, pp. 3798, 2019, doi: 10.3390/en12193798.
  16.  J. Smith, S. Rönnberg, M. Bollen, J. Meyer, A.M. Blanco, K.-L. Koo, and D. Mushamalirwa, “Power quality aspects of solar power – results from CIGRE JWG C4/C6.29,” CIRED – Open Access Proceedings Journal, 2017, pp. 809–813, 2017, doi: 10.1049/oap-cired.2017.0351.
  17.  J. Meyer, A. M. Blanco, S. Rönnberg, M. Bollen, and J. Smith, “CIGRE C4/C6.29: survey of utilities experiences on power quality issues related to solar power,” CIRED – Open Access Proceedings Journal, 2017, pp. 539–543, doi: 10.1049/oap-cired.2017.0456.
  18.  Z. Chen and E. Spooner, “Grid power quality with variable speed wind turbines,” IEEE Trans. Energy Convers., vol. 16, no. 2, pp. 148–154, 2001, doi: 10.1109/60.921466.
  19.  A. Lange and M. Pasko, “Selected aspects of wind power plant operation in the power system,” in Proc. 12th Int. Conf. and Exhibition on Electrical Power Quality and Utilisation (EPQU), 2020, pp. 1–4, doi: 10.1109/EPQU50182.2020.9220302.
  20.  M. Mróz, K. Chmielowiec, and Z. Hanzelka, “Voltage fluctuations in networks with distributed power sources,” in Proc. 15th Int. Conf. on Harmonics and Quality of Power (ICHQP), 2012, pp.  920–925, doi: 10.1109/ICHQP.2012.6381206.
  21.  M. Farhoodnea, A. Mohamed, H. Shareef, and H. Zayandehroodi, “Power quality impact of renewable energy based generators and electric vehicles on distribution systems,” Procedia Technology, vol. 11, pp. 11–17, 2013, doi: 10.1016/j.protcy.2013.12.156.
  22.  N. Golovanov, G.C. Lazaroiu, M. Roscia, and D. Zaninelli, “Power quality assessment in small scale renewable energy sources supplying distribution systems,” Energies, vol. 6, no. 2, pp.  634–645, 2013, doi: 10.3390/en6020634.
  23.  A. Merzic, M. Music, and M. Redzic, “A complementary hybrid system for electricity generation based on solar and wind energy taking into account local consumption – Case study,” in Proc. 3rd Int. Conf. on Electric Power and Energy Conversion Systems, 2013, pp.  1–6, doi: 10.1109/EPECS.2013.6712993.
  24.  R.N.S.R. Mukhtaruddin, H.A. Rahman, and M.O.J. Hassan, “Economic analysis of grid-connected hybrid photovoltaic-wind system in Malaysia,” in Proc. Int. Conf. on Clean Electrical Power (ICCEP), 2013, pp. 577–583, doi: 10.1109/ICCEP.2013.6586912.
  25.  K. Benyahia, L. Boumediene, and A. Mezouar, “Efficiency and performance of mixed wind farm using photovoltaic solar farm as STATCOM,” in Proc. 3rd Int. Renewable and Sustainable Energy Conference (IRSEC), 2015, pp. 1–5, doi: 10.1109/IRSEC.2015.7455092.
  26.  Ö. Kiymaz and T. Yavuz, “Wind power electrical systems integration and technical and economic analysis of hybrid wind power plants,” in Proc. IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 158–163, doi: 10.1109/ ICRERA.2016.7884529.
  27.  C. Wang, S. Liu, Z. Bie, and J. Wang, “Renewable Energy Accommodation Capability Evaluation of Power System with Wind Power and Photovoltaic Integration,” IFAC-PapersOnLine, vol. 51, no. 28, pp.  55–60, 2018, doi: 10.1016/j.ifacol.2018.11.677.
  28.  M. Bollen, J. Meyer, H. Amaris, A.M. Blanco, A.G. de Castro, J. Desmet, M. Klatt, Ł. Kocewiak, S. Rönnberg, and K. Yang, “Future work on harmonics – some expert opinions Part I – wind and solar power,” Proc. of 16th International Conference on Harmonics and Quality of Power (ICHQP), 2014, pp. 904–908, doi: 10.1109/ICHQP.2014.6842870.
  29.  S.K. Rönnberg, K. Yang, M.H.J. Bollen, and A. Gil de Castro, “Waveform distortion – a comparison of photovoltaic and wind power,” Proc. of 16th International Conf. on Harmonics and Quality of Power (ICHQP), 2014, pp. 733–737, doi: 10.1109/ICHQP.2014.6842782.
  30.  O. Lennerhag, M. Bollen, S. Ackeby, and S. Rönnberg, “Very short variations in voltage (timescale less than 10 minutes) due to variations in wind and solar power,” Proc. of International Conference and Exhibition on Electricity Distribution, CIRED, 2015, pp. 1–5.
  31.  A. Zomers and R. Seethapathy, “The potential of hybrid systems for off-grid power supply,” ELECTRA, no. 289, Report WG C6.28, pp. 23–27, 2016.
  32.  D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, and S. Bofinger, “Seasonal optimal mix of wind and solar power in a future, highly renewable Europe,” Renew. Energy, vol.  35, no. 11, pp. 2483–2489, 2010, doi: 10.1016/j.renene.2010.03.012.
  33.  L. Hirth, “The optimal share of variable renewables: How the variability of wind and solar power affects their welfare-optimal deployment,” The Energy Journal, vol. 9, no. 1, pp.  149–184, 2015, doi: 10.2139/ssrn.2351754.
  34.  W. Ningbo, “The key technology of the control system of wind farm and photovoltaic power plant cluster,” in Proc. IEEE International Conference on Power System Technology, 2014, pp.  2833–2839, doi: 10.1109/POWERCON.2014.6993817.
  35.  S.S. Singh, E. Fernandez, and T.Ksh. Tompok Singh, “Reliable PV/Wind renewable energy mix for a remote area,” in Proc. Annual IEEE India Conference (INDICON), 2015, pp. 1–5, doi: 10.1109/INDICON.2015.7443419.
  36.  Y. Zhang, L. Wei, and J. Li, “Study on renewable energy integration influence and accommodation capability in regional power grid,” in Proc. 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2015, pp. 563–568, doi: 10.1109/DRPT.2015.7432292.
  37.  L.R.A. Gabriel Filho, O.J. Seraphim, F.L. Caneppele, C.P.C. Gabriel, and F.F. Putti, “Variable analysis in wind photovoltaic hybrid systems in rural energization,” IEEE Latin America Transactions, vol. 14, no. 12, pp. 4757–4761, 2016, doi: 10.1109/TLA.2016.7817007.
  38.  Y. Shuo, B. Hongkun, W. Jiangbo, Y. Meng, M. Renyuan, and Y. Jing, “Accommodated capacity for wind and solar power under the background of supply side reform: Model and empirical study,” in Proc. 2nd International Conference on Power and Renewable Energy (ICPRE), 2017, pp.  382–386, doi: 10.1109/ICPRE.2017.8390563.
  39.  D.B. Carvalho, E.C. Guardia, and J.W. Marangon Lima, “Technical-economic analysis of the insertion of PV power into a wind-solar hybrid system,” Solar Energy, vol. 191, pp.  530–539, 2019, doi: 10.1016/j.solener.2019.06.070.
  40.  A. Thomas and P. Racherla, “Constructing statutory energy goal compliant wind and solar PV infrastructure pathways,” Renewable Energy, vol. 161, pp. 1–19, 2020, doi: 10.1016/j.renene.2020.06.141.
  41.  Z. Hanzelka and A. Firlit. Elektrownie ze źródłami odnawialnymi. Zagadnienia wybrane. Kraków: AGH, 2015, pp. 459–484.
  42.  K. Mousa, H. AlZu’bi, and A. Diabat, “Design of a hybrid solar-wind power plant using optimization,” in Proc. 2nd International Conference on Engineering System Management and Applications (ICESMA), 2010, pp. 1–6.
  43.  J. Jurasz and J. Mikulik, “Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 859–869, 2017, doi: 10.1515/bpasts-2017-0093.
  44.  P. Marchel, J. Paska, K. Pawlak, and K. Zagrajek, “A practical approach to optimal strategies of electricity contracting from Hybrid Power Sources,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1543–1551, 2020, doi: 10.24425/bpasts.2020.135377.
  45.  R. Al Badwawi, M. Abusara, and T. Mallick, “A review of hybrid solar PV and wind energy system,” Smart Science, vol. 3, no.  3, pp. 127–138, 2015, doi: 10.1080/23080477.2015.11665647.
  46.  F.A. Khan, N. Pal, and S.H. Saeed, “Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies,” Renewable and Sustainable Energy Reviews, vol. 92, pp. 937–947, 2018, doi: 10.1016/j. rser.2018.04.107.
  47.  K. Sood and E. Muthusamy, “A comprehensive review on hybrid renewable energy systems,” Modern Physics Letters B, vol. 34, no.  27, pp. 2050290, 2020, doi: 10.1142/S0217984920502905.
  48.  Commission Regulation (EU) 2016/631 of 14 April 2016 establishing a network code on requirements for grid connection of generators.
  49.  International Electrotechnical Commission (IEC). Electromagnetic compatibility (EMC). Testing and measurement techniques – Power quality measurement methods (IEC 61000-4-30:2015). IEC: Geneva, Switzerland, 2015.
  50.  International Electrotechnical Commission (IEC). Electromagnetic compatibility (EMC). Power quality measurement in power supply systems – Part 2: Functional tests and uncertainty requirements (IEC 62586-2:2017). IEC: Geneva, Switzerland, 2017.
  51.  International Electrotechnical Commission (IEC). Electromagnetic compatibility (EMC). Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto (IEC 61000-4-7: 2002 + AMD1: 2008 CSV). IEC: Geneva, Switzerland, 2009.
  52.  D. Buła, D. Grabowski, A. Lange, M. Maciążek, and M. Pasko, “Long- and Short-Term Comparative Analysis of Renewable Energy Sources,” Energies, vol. 13, no. 14, pp. 3610, 2020, doi: 10.3390/en13143610.
  53.  International Electrotechnical Commission (IEC). Recommendations for small renewable energy and hybrid systems for rural electrification – Part 7‒1: Generators – Photovoltaic generators (IEC TS 62257-7-1:2010). IEC: Geneva, Switzerland, 2010.
  54.  International Electrotechnical Commission (IEC). Electromagnetic compatibility (EMC) – Part 3‒6: Limits – Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems (IEC TR 61000-3-6:2008). IEC: Geneva, Switzerland, 2008.
  55.  European Committee for Electrotechnical Standardization. Standard EN 50160:2010: Voltage Characteristics of Electricity Supplied by Public Distribution Systems; CENELEC: Brussels, Belgium, 2010.
  56.  International Electrotechnical Commission (IEC). Wind energy generation systems – Part 21‒1: Measurement and assessment of electrical characteristics – Wind turbines (IEC 61400-21-1:2019). IEC: Geneva, Switzerland, 2019.
Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Lange
1
ORCID: ORCID
Marian Pasko
2
Dariusz Grabowski
2
ORCID: ORCID

  1. Department of Electrical and Power Engineering, Electronics and Automation, University of Warmia and Mazury, ul. M. Oczapowskiego 11, 10-719 Olsztyn, Poland
  2. Department of Electrical Engineering and Computer Science, Silesian University of Technology, ul. Akademicka 10, 44-100 Gliwice, Poland

Instrukcja dla autorów

Guide for Authors

https://www.editorialsystem.com/bpasts/journal/for_authors/

As of January 1st, 2025, there are changes in the fees for open access publications in Bulletin of the Polish Academy of Sciences Technical Sciences: 2000 PLN (approx. 500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 250 PLN (approx. 60 EUR) per page (see the above link with instructions for Authors for details)

Guide for Reviewers

https://www.editorialsystem.com/bpasts/journal/for_reviewers/

Call for Papers

https://www.editorialsystem.com/bpasts/journal/call_for_papers/

Guide for Guest Editors

https://www.editorialsystem.com/editor/bpasts/journal/page1/

Dodatkowe informacje

NEW PUBLICATION FEES
Articles submitted by December 31st, 2024: existing fee: 1500 PLN (and mandatory over-length charges of 230 PLN per page)
Articles submitted from January 1st, 2025: new fee: 2000 PLN (approx. 500 EUR- depending on the exchange rate) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 250 PLN).

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji