@ARTICLE{Singh_Ashish_Kumar_Experimental_2024, author={Singh, Ashish Kumar and Pali, Harveer Singh and Mohsin Khan, Mohammad}, volume={vol. 45}, number={No 1}, journal={Archives of Thermodynamics}, pages={109-118}, howpublished={online}, year={2024}, publisher={The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences}, abstract={This study explored the ternary blends of biodiesel-diesel-n-butanol and biodiesel-diesel-n-octanol on common rail direct injec-tion (CRDI) diesel engines. The compositions of fuels, which varied from 0% to 100%, were altered by up to 5%. On the basis of their properties, these blends were chosen, with various concentrations of alcohol at 5% and 10%, 5% diesel, and the remainder being biodiesel. Two ternary fuel blends of waste cooking oil biodiesel (90–85%), diesel (5%), and butanol (5–10%), namely BD90D5B5 and BD85D5B10, and subsequently, another two ternary similar blends of waste cooking oil biodiesel (90–85%), diesel (5%), and octanol (5–10%), namely BD90D5O5 and BD85D5O10, were used to conduct the experiments. The experiments were done with varying injection pressure from 17° to 29° crank angle (CA) before top dead centre (bTDC). The optimum con-dition for the blends is achieved at 26°CA bTDC for 80% loading. So, the engine trials were conducted on 26°CA bTDC to attain the results. The BD90D5O10 blend achieved the lowest brake specific fuel consumption (BSFC) reading of 0.308 kg/kWh while operating at full load. The maximum brake thermal efficiency (BTE) was 31.46% for BD90D5B5. The maximum heat release rate (HRR) achieved with BD85D5O5 fuel blend was 58.54 J/°CA. The quantity of carbon monoxide that BD85D5B10 created was the lowest (25.86 g/kWh). BD85D5B10 had a minimal unburned hydrocarbon emission of 0.157 g/kWh while operating at full load. Oxides of nitrogen (NOx) were emitted in the maximum quantity by BD85D5O10, which was equal to 6.01 g/kWh. This study establishes the viability of blends of biodiesel and alcohol as an alternative for petro-diesel in the future to meet the growing global energy demand.}, type={Article}, title={Experimental investigations of CI engine performance using ternary blends of n-butanol/biodiesel/diesel and n-octanol/biodiesel/diesel}, URL={http://czasopisma.pan.pl/Content/131258/11_AOT-00544-2023_Pali.pdf}, doi={10.24425/ather.2024.150443}, keywords={Biodiesel, Ternary blends, Performance, Combustion, Emission}, }