Details

Title

Sensors and Systems for the Detection of Explosive Devices - An Overview

Journal title

Metrology and Measurement Systems

Yearbook

2012

Issue

No 1

Authors

Keywords

Explosive device sensors ; detection of explosive materials

Divisions of PAS

Nauki Techniczne

Coverage

3-28

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Date

2012

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10178-012-0001-3 ; ISSN 2080-9050, e-ISSN 2300-1941

Source

Metrology and Measurement Systems; 2012; No 1; 3-28

References

Woodfin R. (2007), Trace chemical sensing of explosives. ; Hussein E. (1998), Review of one-side approaches to radiographic imaging for the detection of explosives and narcotics, Radiation Measurements, 29, 6, 581, doi.org/10.1016/S1350-4487(98)00075-4 ; Kanu A. (2008), Ion mobility-mass spectrometry, Mass Spectrom, 43, 1, doi.org/10.1002/jms.1383 ; Reno J. (1999), Guide for the selection of commercial explosives detection systems for low enforcement application. ; Singh S. (2003), Review of Explosives detection systems for aviation security, Signal Processing, 83, 31, doi.org/10.1016/S0165-1684(02)00391-2 ; Harding G. (2004), Radiation, X-ray scatter tomography for explosives detection, Physics and Chemistry, 71, 869. ; Vogel H. (2007), Search by X-rays applied technology, European Journal of Radiology, 63, 227, doi.org/10.1016/j.ejrad.2007.03.039 ; Liu Y. (2008), Comparison of neutron and high-energy X-ray dual-beam radio- graphy for air cargo inspection, Applied Radiation and Isotopes, 66, 463, doi.org/10.1016/j.apradiso.2007.10.005 ; Dicken A. (2010), The separation of X-ray diffraction patterns for threat detection, Applied Radiation and Isotopes, 68, 439, doi.org/10.1016/j.apradiso.2009.11.072 ; Eger L. (2011), A learning-based approach to explosives detection using multi-energy x-Ray computed tomography, null, 2004. ; Faust A. (2009), Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection, IEEE Transactions on Nuclear Science, 56, 1, doi.org/10.1109/TNS.2008.2009537 ; Buffler A. (2004), Contraband detection with fast neutrons, Radiation Physics and Chemistry, 71, 853, doi.org/10.1016/j.radphyschem.2004.04.110 ; Reber E. (2007), Explosives Detection System: Development and Enhancements, Sens Imaging, 8, 121, doi.org/10.1007/s11220-007-0038-7 ; Runkle R. (2009), Photon and neutron interrogation techniques for chemical explosives detection in air cargo, Nuclear Instruments and Methods in Physics Research A, 603, 510, doi.org/10.1016/j.nima.2009.02.015 ; Brooks F. (2011), Detection of explosive remnants of war by neutron thermalisation, Applied Radiation and Isotopes, 70, 1, 119, doi.org/10.1016/j.apradiso.2011.07.006 ; Sharma S. (2010), Explosive detection system using pulsed 14MeV neutron source, Fusion Engineering and Design, 85, 1562, doi.org/10.1016/j.fusengdes.2010.04.044 ; Papp A. (2011), Detection and identification of explosives and illicit drugs using neutron based techniques, J. Radioanal. Nucl. Chem, 288, 363, doi.org/10.1007/s10967-011-0994-1 ; Smith J. (2010), Magnetic field-cycling NMR and 14N, 17O quadrupole resonance in the explosive pentaerythritoltetranitrate (PETN), Journal of Magnetic Resonance, 204, 139, doi.org/10.1016/j.jmr.2010.02.019 ; Fischer N. (2011), 1-Nitratoethyl-5- nitriminotetrazole derivatives - Shaping future high explosives, Polyhedron, 30, 2374, doi.org/10.1016/j.poly.2011.05.042 ; Regulla D. (2000), From dating to biophysics D20 years of progress in applied ESR spectroscopy, Applied Radiation and Isotopes, 52, 1023, doi.org/10.1016/S0969-8043(00)00043-9 ; Gudmundson E. (2009), Based Explosives Detection-An Overview, IEEE - Transection on Signal Processing, 56, 3, 887. ; Zhang X. (2010), CMOS Receiver Front-end for Nuclear Quadrupole Resonance Based Explosives Detection, IEEE - Circuits and Systems, 53, 8, 1093. ; Wang X. (2010), The effects of Gd doping and oxygen vacancies on the properties of EuO films prepared via pulsed laser deposition, IEEE Trans. Magn, 46, 1879, doi.org/10.1109/TMAG.2010.2046314 ; Smith J. (2011), 14N Quadrupole Resonance and 1H T1 Dispersion in the Explosive RDX, Journal of Magnetic Resonance, 213, 1, 191, doi.org/10.1016/j.jmr.2011.09.011 ; Gregorovic A. (2009), TNT detection with 14N NQR: Multipulse sequences and matched filter, Journal of Magnetic Resonance, 198, 215, doi.org/10.1016/j.jmr.2009.02.011 ; Osa T. (2007), NQR: From imaging to explosives and drugs detection, Physica B, 389, 45, doi.org/10.1016/j.physb.2006.07.024 ; Ostafin M. (2007), 14N-NQR based device for detection of explosives in landmines, Measurement, 40, 43, doi.org/10.1016/j.measurement.2006.04.003 ; Kuznitsov A. (2006), Detection of improvised explosives and explosive devices in Detection and disposal improvised explosives. ; Stitzel S. (2001), Array-to-Array Transfer of an Artificial Nose Classifier, Anal. Chem, 73, 21, 5266, doi.org/10.1021/ac010111w ; Koscho M. (2002), Properties of Vapor Detector Arrays Formed through Plasticization of Carbon Black-Organic Polymer Composites, Anal. Chem, 74, 1307, doi.org/10.1021/ac011054+ ; Wohltejen H. (1998), Colloidal metal-insulator-metal ensemble chemiresistor sensor, Anal. Chem, 70, 2856, doi.org/10.1021/ac9713464 ; Pearce T. (2003), Handbook of machine olfaction. ; Jakubik W. (2008), Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems, Bulletin of Polish Academy of Sciences: Technical Sciences, 56, 2, 133. ; Murugarajan A. (2011), Measurement, modeling and evaluation of surface parameter using capacitive-sensor-based measurement system, Metrology and Measurement Systems, 18, 3, 403, doi.org/10.2478/v10178-011-0007-9 ; <a target="_blank" href='http://science.nasa.gov/science-news/science-at-nasa/2004/06oct_enose'>http://science.nasa.gov/science-news/science-at-nasa/2004/06oct_enose</a> ; <a target="_blank" href='http://www.prenhall.com/settle/chapters/ch31.pdf'>http://www.prenhall.com/settle/chapters/ch31.pdf</a> ; Collin O. (2006), Fast Gas Chromatography of Explosive Compounds Using a Pulsed-Discharge Electron Capture Detector, Journal of Forensic Sciences, 51, 815, doi.org/10.1111/j.1556-4029.2006.00171.x ; <a target="_blank" href='http://www.interactpartnership.co.uk/members/technologies/23.pdf'>http://www.interactpartnership.co.uk/members/technologies/23.pdf</a> ; <a target="_blank" href='http://www.iut-berlin.info/fileadmin/user_upload/Literatur/Poster_Symposium_ISADE_FINEX.pdf'>www.iut-berlin.info/fileadmin/user_upload/Literatur/Poster_Symposium_ISADE_FINEX.pdf</a> ; <a target="_blank" href='http://sniffexquestions.blogspot.com/2007/09/what-about-ade-100-ade-101-ade650-ade.html'>http://sniffexquestions.blogspot.com/2007/09/what-about-ade-100-ade-101-ade650-ade.html</a> ; <a target="_blank" href='http://www.scribd.com/doc/56952947/38/The-Electron-Capture-Detector'>http://www.scribd.com/doc/56952947/38/The-Electron-Capture-Detector</a> ; Gut K. (2010), Sensitivity of polarimetric waveguide interferometer for different waveguides, Acta Physica Polonica A, 118, 6, 1140, doi.org/10.12693/APhysPolA.118.1140 ; Toaland S. (2006), Polymer sensors for nitroaromatic explosives detection, J. Mater. Chem, 16, 2871, doi.org/10.1039/b517953j ; Staples E. (2004), Detecting Chemical Vapours from Explosives Using the zNose®, an Ultra-High Speed Gas Chromatograph, Electronic Noses & Sensors for the Detection of Explosives, NATO Science Series, 159, 235. ; Casalinuovo I. (2006), Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection, Sensors, 6, 1428, doi.org/10.3390/s6111428 ; Wilson A. (2009), Applications and Advances in Electronic-Nose Technologies, Sensors, 9, 5099, doi.org/10.3390/s90705099 ; Eiceman G. (2005), Ion Mobility Spectrometry, doi.org/10.1201/9781420038972 ; Singh S. (2007), Sensors - an effective approach for the detection of explosives, Journal of Hazardous Materials, 144, 15, doi.org/10.1016/j.jhazmat.2007.02.018 ; Naal Z. (2002), Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion, Analytical Chemistry, 74, 140, doi.org/10.1021/ac010596o ; Wilson R. (2003), Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT, Journal of Electroanalytical Chemistry, 557, 109, doi.org/10.1016/S0022-0728(03)00353-X ; Hatab N. (2010), Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy, J. Raman Spectroscopy, 41, 1131, doi.org/10.1002/jrs.2574 ; Smulko J. (2011), Detection of illicit chemicals by portable Raman spectrometer, Bulletin Polish Academy of Science. Technical Science. ; <a target="_blank" href='http://www.sciencedaily.com/releases/2011/05/110509161759.htm'>http://www.sciencedaily.com/releases/2011/05/110509161759.htm</a> ; Kosterev A. (2005), Applications of quartz tuning forks in spectroscopic gas sensing, Rev. Sci. Instrum, 76, 043105, doi.org/10.1063/1.1884196 ; Pedersen M. (2005), Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications, Proc. SPIE, 108, 5732. ; Laurila T. (2005), Diode laser-based photoacoustic spectroscopy with interferometrically- enhanced cantilever detection, Opt. Express, 13, 2453, doi.org/10.1364/OPEX.13.002453 ; <a target="_blank" href='http://www.sciencedaily.com/releases/2008/06/080625153328.htm'>http://www.sciencedaily.com/releases/2008/06/080625153328.htm</a> ; Filenko D. (2008), Experimental setup for characterization of self-actuated microcantilevers with piezoresistive readout for chemical recognition of volatile substances, Rev. Sci. Instr, 79, 094101, doi.org/10.1063/1.2976038 ; <a target="_blank" href='http://www.arete.com/index.php?view=stil_mcm'>http://www.arete.com/index.php?view=stil_mcm</a> ; Schubert H. (2005), Detection and disposal of improvised explosives. ; Onat B. (2009), A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging, Proc. SPIE, 7310, doi.org/10.1117/12.820798 ; Cremers D. (2006), Handbook of Laser-Induced Breakdown Spectroscopy, doi.org/10.1002/0470093013 ; Michel A. (2010), Review: Applications of single-shot laser-induced breakdown spectroscopy, Spectrochim. Acta B, 65, 185, doi.org/10.1016/j.sab.2010.01.006 ; Fortes F. (2010), The development of field able laser-induced breakdown spectrometer: No limits on the horizon, Spectrochim. Acta B, 65, 975, doi.org/10.1016/j.sab.2010.11.009 ; Gottfried J. (2009), Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects, Anal. Bioanal. Chem, 395, 283, doi.org/10.1007/s00216-009-2802-0 ; Weckenmann A. (2010), Optical multi-sensor metrology for extruded profiles, Metrology and Measurement Systems, 17, 1, 47. ; Lazic V. (2009), Analysis of explosive and other residues by laser induced breakdown spectroscopy, Spectrochim. Acta B, 64, 1028, doi.org/10.1016/j.sab.2009.07.035 ; Lucena P. (2011), New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy, Spectrochim. Acta B, 66, 12, doi.org/10.1016/j.sab.2010.11.012 ; Lazic V. (2011), Detection of explosives in traces by laser induced breakdown spectroscopy: Differences from organic interferents and conditions for a correct classification, Spectrochim. Acta B, 66, 644, doi.org/10.1016/j.sab.2011.07.003 ; F. De Lucia, Jr (2010), Characterization of a series of nitrogen-rich molecules using laser- induced breakdown spectroscopy, Propellants Explos. Pyrotech, 35, 268, doi.org/10.1002/prep.201000009 ; Sovova K. (2010), A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-VIS spectrometry, Analyst, 135, 1106, doi.org/10.1039/b926425f ; Tran M. (2001), Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy, J. Anal. At. Spectrom, 16, 628, doi.org/10.1039/B009905H ; Gottfried J. (2009), Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom, 24, 288, doi.org/10.1039/b818481j ; Babushok V. (2006), Double pulse laser ablation and plasma, laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B, 61, 999, doi.org/10.1016/j.sab.2006.09.003 ; Lasheras R. (2011), Discrimination of organic solid materials by LIBS using methods of correlation and normalized coordinates, J. Hazard. Mat, 192, 704, doi.org/10.1016/j.jhazmat.2011.05.074 ; Kwiatkowski A. (2010), Algorithms of chemicals detection using raman spectra, Metrology and Measurement Systems, 17, 4, 549, doi.org/10.2478/v10178-010-0045-1 ; F. De Lucia, Jr (2008), Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues, Appl. Opt, 47, doi.org/10.1364/AO.47.00G112 ; Clegg S. (2009), Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques, Spectrochim. Acta B, 64, 79, doi.org/10.1016/j.sab.2008.10.045 ; Koujelev A. (2010), Laser-induced breakdown spectroscopy with artificial neural network processing for material identification, Planet. Space Sci, 58, 682, doi.org/10.1016/j.pss.2009.06.022 ; Koren Y. (2004), Robust Linear Dimesionality Reduction, IEEE Trans. Visualisation and computer Graphics, 10, 459, doi.org/10.1109/TVCG.2004.17 ; Hoehse M. (2009), A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis, Spectrochim. Acta B, 64, 1219, doi.org/10.1016/j.sab.2009.09.004 ; Susek W. (2010), Thermal Microwave Radiation for Subsurface Absolute Temperature Measurement, Acta Physica Polonica A, 118, 6, 1246, doi.org/10.12693/APhysPolA.118.1246 ; Seguin, S. (2009). Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation. <i>Ph.D. dissertation</i>, Missouri S&T. ; Guelle D. (2003), Metal detector handbook for humanitarian demining, European Communities. ; Daniels, D. J. (2009). Ground Penetrating Radar for Buried Landmine and IED Detection, Unexploded Ordnance Detection and Mitigation. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i>. ; Kaczmarek P. (2011), Stepped frequency continuous wave radar unit for unexploded ordnance and improvised explosive device detection, null, 105. ; Yun-Shik L. (2008), Principles of Terahertz Science and Technology. ; Kemp M. (2011), Explosives Detection by Terahertz Spectroscopy-A Bridge Too Far?, IEEE Transactions on Terahertz Science and Technology, 1, 282, doi.org/10.1109/TTHZ.2011.2159647 ; Dragoman D. (2004), Terahertz fields and applications, Prog. Quantum Electron, 28, 1, doi.org/10.1016/S0079-6727(03)00058-2 ; Palka N. (2011), THz reflection spectroscopy of explosives measured by Time Domain Spectroscopy, Acta Physica Polonica A, 120, 4, 713, doi.org/10.12693/APhysPolA.120.713 ; Chalmers J. (1999), Mid-infrared spectroscopy. Spectroscopy in process analysis, 117. ; <a target="_blank" href='http://www.ipm.fraunhofer.de'>http://www.ipm.fraunhofer.de</a> ; <a target="_blank" href='http://www.teledyne-ai.com/pdf/lga-3500.pdf'>http://www.teledyne-ai.com/pdf/lga-3500.pdf</a> ; Busch K. (1999), Cavity-Ringdown Spectroscopy, An Ultratrace-Absorption Measurement Technique, null. ; Berden G. (2000), Cavity ring-down spectroscopy. Experimental schemes and applications, Int. Rev. Phys. Chem, 19, 4, 565, doi.org/10.1080/014423500750040627 ; Kasyutich V. (2003), Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode, Appl. Phys. B, 76, 6, 691, doi.org/10.1007/s00340-003-1153-3 ; Wojtas J. (2011), Chapter in Optoelectronics - Devices and Applications, 147. ; Wojtas J. (2006), Sensitive detection of NO2 with Cavity Enhanced Spectroscopy, Optica Applicata, 36, 4, 461. ; Wojtas J. (2008), Signal processing system in the cavity enhanced spectroscopy, Opto-Electron. Rev, 16, 4, 44, doi.org/10.2478/s11772-008-0034-z ; Bielecki, Z., Stacewicz, T., Wojtas, J., Nowakowski, M., Mikołajczyk, J. (2011). Polish patent application No P.394439. ; Wojtas J. (2011), Appling CEAS method to UV, VIS, and IR spectroscopy sensors, Bulletin of the Polish Academy of Sciences, Technical Sciences, 59, 4, doi.org/10.2478/v10175-011-0050-x ; Wojtas, J. (2011). Polish patent application No P.395707. ; Stacewicz T. (2012), Cavity Ring Down Spectroscopy: detection of trace amounts of matter, Opto-Electron. Rev, 20, 1, 34, doi.org/10.2478/s11772-012-0006-1 ; Oxley J. (1995), Explosive detection: potential problems, Proc. SPIE, 2511, 217, doi.org/10.1117/12.219597 ; Pustelny T. (2007), Optical interferometric structures for application in gas sensors, Optica Applicata, 37, 102, 187. ; Struk P. (2011), Photonic structures with grating couplers based on ZnO, Opto-electronics Review, 19, 4, 462, doi.org/10.2478/s11772-011-0046-y
×