Details Details PDF BIBTEX RIS Title Diagnosis of Incipient Faults in Nonlinear Analog Circuits Journal title Metrology and Measurement Systems Yearbook 2012 Issue No 2 Authors Yong Deng ; Yibing Shi ; Wei Zhang Keywords nonlinear circuits ; fault diagnosis ; Volterra series ; fractional correlation ; hidden Markov model (HMM) Divisions of PAS Nauki Techniczne Coverage 203-218 Publisher Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation Date 2012 Type Artykuły / Articles Identifier DOI: 10.2478/v10178-012-0018-7 ; ISSN 2080-9050, e-ISSN 2300-1941 Source Metrology and Measurement Systems; 2012; No 2; 203-218 References Li F. (2002), Fault detection for linear analog IC-the method of short-circuits admittance parameters, IEEE Trans. Circuits Syst. I, 49, 1, 105, doi.org/10.1109/81.974884 ; Huertas I. (1993), Test and design for testability of analog and mixed-signal integrated circuits: theoretical basis and pragmatical approaches, null, 75. ; Kondagunturi R. (1999), Benchmark circuits for analog and mixed-signal testing, null, 217. ; Tadeusiewicz M. (2011), Multiple soft fault diagnosis of nonlinear dc circuits considering component tolerances, Metrol. Meas. Syst, 18, 3, 349, doi.org/10.2478/v10178-011-0002-1 ; Starzyk J. (2004), Entropy-based optimum test nodes selection for the analog fault dictionary techniques, IEEE Trans. Instrum. Meas, 53, 3, 754, doi.org/10.1109/TIM.2004.827085 ; Bandler J. (1985), Fault diagnosis of analog circuits, In: Proc. IEEE, 73, 8, 1279, doi.org/10.1109/PROC.1985.13281 ; Grzechca D. (2011), Soft fault clustering in analog electronic circuits with the use of self organizing neural network, Metrol. Meas. Syst, 18, 4, 555, doi.org/10.2478/v10178-011-0054-8 ; Mohsen A. (2004), Selection of input stimulus for fault diagnosis of analog circuits using ARMA model, Int. J. Electron. Commun, 58, 3, 212, doi.org/10.1078/1434-8411-54100231 ; Aminian F. (2002), Analog fault diagnosis of actual circuits using neural networks, IEEE Trans. Instrum. Meas, 51, 3, 544, doi.org/10.1109/TIM.2002.1017726 ; Aminian M. (2000), Neural-network based analog circuit fault diagnosis using wavelet transform as preprocessor, IEEE Trans. Circuits Syst. II, 47, 2, 151, doi.org/10.1109/82.823545 ; Zhou L. (2009), Soft fault diagnosis in analog circuit based on fuzzy and direction vector, Metrol. Meas. Syst, 16, 1, 61. ; Wang P. (2005), A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math, IEEE Trans. Circuits Syst. I, 52, 10, 2118, doi.org/10.1109/TCSI.2005.853266 ; Zhang W. (2010), Soft-fault diagnosis of analog circuit with tolerance using FNLP, Metrol. Meas. Syst, 17, 3, 349, doi.org/10.2478/v10178-010-0030-8 ; Roh J. (2004), Subband filtering for time and frequency analysis of mixed-signal circuit testing, IEEE Trans. Instrum. Meas, 53, 2, 602, doi.org/10.1109/TIM.2003.820494 ; Yang C. (2011), Methods of handling the tolerance and test-point selection problem for analog-circuit fault diagnosis, IEEE Trans. Instrum. Meas, 60, 1, 176, doi.org/10.1109/TIM.2010.2050356 ; Grzechca D. (2010), PCA application to frequency reduction for fault diagnosis in analog and mixed electronic circuits, null, 1919. ; Cui J. (2011), Analog circuit fault classification using improved one-against-one support vector machines, Metrol. Meas. Syst, 18, 4, 569, doi.org/10.2478/v10178-011-0055-7 ; Cui J. (2010), A novel approach of analog fault classification using a support vector machines classifier, Metrol. Meas. Syst, 17, 4, 561, doi.org/10.2478/v10178-010-0046-0 ; Grzechca D. (2009), Fault diagnosis in analog electronic circuits - the SVM approach, Metrol. Meas. Syst, 16, 4, 583. ; Yang S. (2003), A condition-based failure-prediction and processing-scheme for preventive maintenance, IEEE Trans. Reliab, 52, 3, 373, doi.org/10.1109/TR.2003.816402 ; Xu L. (2010), A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM, Circuits Syst Signal Process, 29, 577, doi.org/10.1007/s00034-010-9160-1 ; Jiang B. (2011), Sliding mode observer-based fault estimation for nonlinear networked control systems, Circuits Syst Signal Process, 30, 1, doi.org/10.1007/s00034-010-9203-7 ; Glentis G. (1999), Efficient algorithms for Volterra system identification, IEEE Trans. Signal Process, 47, 11, 3042, doi.org/10.1109/78.796438 ; Rugh W. (1981), Nonlinear system theory - the Volterra/Wiener approach. ; Evans C. (1996), Periodic signals for measuring nonlinear Volterra kernels, IEEE Trans. Instrum. Meas, 45, 2, 362, doi.org/10.1109/19.492749 ; Akay O. (2001), Fractional convolution and correlation via operator methods and an application to detection of linear FM signals, IEEE Trans. Signal Process, 49, 5, 979, doi.org/10.1109/78.917802 ; Ozaktas H. (2001), J. Wiley. ; Almeida L. (1994), The fractional Fourier transform and time-frequency representations, IEEE Trans. signal process, 42, 11, 3084, doi.org/10.1109/78.330368 ; Rabiner L. (1986), An introduction to hidden Markov models, IEEE ASSP Mag, 3, 1, 4, doi.org/10.1109/MASSP.1986.1165342 ; Yang J. (1997), Human action learning via hidden Markov model, IEEE Trans. Syst. Man. Cybern. Part A, Syst. Humans, 27, 1, 34, doi.org/10.1109/3468.553220 ; Juang B. (1991), Hidden Markov models for speech recognition, Technometrics, 33, 3, 251, doi.org/10.1080/00401706.1991.10484833 ; Catelani M. (2002), Soft fault detection and isolation in analog circuits: Some results and a comparison between a fuzzy method and radial basis function networks, IEEE Trans. Instrum. Meas, 51, 2, 196, doi.org/10.1109/19.997811 ; Trevor G. (2009), Nonlinear system identification using a subband adaptive Volterra filter, IEEE Trans. Instrum. Meas, 58, 5, 1389, doi.org/10.1109/TIM.2009.2012939