Szczegóły

Tytuł artykułu

Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2016

Numer

No 3

Autorzy

Słowa kluczowe

heat exchangers ; heat transfer intensification ; CFD ; convection ; air source heat pump

Wydział PAN

Nauki Techniczne

Zakres

45-62

Wydawca

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Data

2016

Typ

Artykuły / Articles

Identyfikator

DOI: 10.1515/aoter-2016-0019 ; ISSN 1231-0956 ; eISSN 2083-6023

Źródło

Archives of Thermodynamics; 2016; No 3; 45-62

Referencje

TalerD (2015), Mathematical modeling and control of plate fin and tube heat exchangers, Energy Convers Manag, 96, doi.org/10.1016/j.enconman.2015.03.015) ; KandlikarS (2002), Two - phase flow patterns , pressure drop , and heat transfer during boiling in minichannel flow passages of compact evaporators, Heat Trans Eng, 23, 5, doi.org/10.1080/014576302753249570 ; KozielS (2012), Knowledge - based response correction and adaptive design specifications for microwave design optimization In : Procedia, Comput Sci, 764, doi.org/10.1016/j.procs.2012.04.082) ; MikielewiczD (2016), Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels, Arch Thermodyn, 37. ; HsiehC (2006), thermal - hydraulic analysis for louver fin heat exchangers with variable louver angle, Appl Therm Eng, 26, 1629, doi.org/10.1016/j.applthermaleng.2005.11.019) ; HepbasliA (2009), A review of heat pump water heating systems, Renew Sustain Energy Rev, 13, 1211, doi.org/10.1016/j.rser.2008.08.002) ; Fluent (2009), Fluent user s guide , Ansys Inc, ANSYS, 20, 15317. ; AmeelB (2012), Numerical optimization of louvered fin heat exchanger with variable louver angles, Phys Conf Ser, 19, 395, doi.org/10.1088/1742-6596/395/1/012054) ; DongJ (2007), Heat transfer and pressure drop correlations for the multi - louvered fin compact heat exchangers, Energy Convers Manag, 48, 1506, doi.org/10.1016/j.enconman.2006.11.023) ; AmeelB (2012), Numerical optimization of louvered fin heat exchanger with variable louver angles, Phys Conf Ser, 13, 395, doi.org/10.1088/1742-6596/395/1/012054) ; KozielS (2011), Surrogate - based methods, Stud Comput Intell, 356, doi.org/10.1007/978-3-642-20859-1_3) ; MikielewiczD (2013), Model of heat transfer in the stagnation point of rapidly evaporating microjet, Arch Thermodyn, 33. ; LeifssonL (2015), Aerodynamic shape optimization by variable - fidelity computational fluid dynamics models A review of recent progress, Comput Sci, 14, 45, doi.org/10.1016/j.jocs.2015.01.003) ; MalapureV (2007), Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger, Int J Therm Sci, 18, 199, doi.org/10.1016/j.ijthermalsci.2006.04.010) ; ZhangX (2003), Flow efficiency in multi - louvered fins, Int J Heat Mass Transf, 46, 1737, doi.org/10.1016/S0017-9310(02)00482-9) ; WangC (2001), A comparative study of compact enhanced fin - and - tube heat exchangers, Int J Heat Mass Transf, 8, 3565, doi.org/10.1016/S0017-9310(01)00011-4 ; XiaY (2006), Frost defrost and refrost and its impact on the air - side thermal - hydraulic performance of louvered - fin , flat - tube heat exchangers, Int J Refrig, 11, 1066, doi.org/10.1016/j.ijrefrig.2006.03.005)

Rada naukowa

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×