Details

Title

Modeling of strains and stresses of material nanostructures

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2009

Volume

vol. 57

Issue

No 1

Authors

Divisions of PAS

Nauki Techniczne

Coverage

41-46

Date

2009

Identifier

DOI: 10.2478/v10175-010-0103-6 ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2009; vol. 57; No 1; 41-46

References

Ray J. (1983), Molecular dynamics equations of motion for systems varying in shape and size, J. Chem. Phys, 79, 10, 5128. ; Ribarsky M. (1988), Dynamical simulation of stress, strain and finite deformation, Phys. Rev. B, 38, 14, 9522. ; Liu W. (2006), Nano Mechanics and Materials. ; Kitagawa H. (1998), Mesoscopic Dynamics of Fracture, doi.org/10.1007/978-3-662-35369-1 ; Raabe D. (1998), Computational Material Science. ; Li Ch. (2003), A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct, 40, 2487. ; Gao X. (2003), Finite deformation continuum model for single-walled carbon nanotubes, Int. J. Solids Struct, 40, 7329. ; Pantano A. (2004), Mechanics of deformation of single- and-multi walled carbon nanotubes, J. Mech. Phys Solids, 52, 789. ; Odagard G. (2002), Equivalent continuum modeling of nano-structured materials, Comp. Sci. Techn, 62, 14, 1869. ; Tserpes K. (2005), Finite element modeling of single walled carbon nanotubes, Composites B, 36, 468. ; Phillips R. (2001), Crystals, Defects, and Microstructures. ; Parrinello M. (1980), Crystal structure and pair potentials: a molecular dynamics study, Phys. Rev. Lett, 45, 14, 1196. ; Parrinello M. (1982), Strain fluctuations and elastic constants, J. Chem. Phys, 76, 5, 2662. ; Mott P. (1992), The atomic strain tensor, J. Theor. Phys, 101, 140. ; Pyrz R. (2007), Discrete-continuum transition at interfaces of nanocomposites, Bull. Pol. Ac.: Tech, 55, 2, 251. ; Dłużewski P. (2003), Numerical simulation of atomic position in quantum dot by means of molecular statics, Arch. Mech, 55, 5-6, 393. ; Capriz G. (1986), Introductory remarks to the dynamics of continua with microstructure, 15. ; Hoover W. (1986), Molecular Dynamics (Lecture Notes in Physics). ; Landman U. (1992), Fundamentals of Friction: Macroscopic and Microscopic Processes. ; Zhou M. (2003), A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proc. Roy. Soc. Lond. A, 459, 2347. ; Wu H. (2006), Molecular dynamics study of the mechanics of metal nanovires at finite temperature, Europ. J. Mech. A/Solids, 25, 370. ; Subramaniyan A. (2008), Continuum interpretation of virial stress in molecular simulations, Int. J. Solids Struct, 45, 4340. ; Sunyk R. (2003), On higher gradient in continuumatomistic modelling, Int. J. Solids Struct, 40, 6877. ; Sunyk R. (2001), Zur Beschreibung Komplexen Materialverhaltens. ; Sumyk R. (2001), Localization analysis of mixed continuum-atomistic model, J. Phys. IV France, 11, 251. ; Belytschko T. (2003), Coupling methods for continuum model with molecular model, Int. J. Multiscale Comput. Engin, 1, 1, 115. ; Delph T. (2005), Local stresses and elastic constants at the atomic scale, Proc. R. Soc. A, 461, 1869. ; Iijima S. (1991), Helical microtubes of graphitic carbon, Nature, 354, 56. ; M. Chwał, <i>Homogenization of Mechanical Properties of Composite Materials Reinforced by Carbon Nanotubes</i>, PhD Thesis, Cracow Univ. Technology, Krakow, 2007, (in Polish). ; Qian D. (2002), Mechanics of carbon nanotubes, Appl. Mech. Rev, 55, 6, 495. ; Arroyo M. (2003), A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes, Mech. Mater, 35, 193. ; Arroyo M. (2004), Finite element methods for the nonlinear mechanics of crystalline sheets and nanotubes, Int. J. Numer. Meth. Eng, 59, 419. ; Belytschko T. (2002), Atomistic simulations of nanotube fracture, Phys. Rev. B, 65, 23, 235430. ; Qian D. (2004), A multiscale projection method for the analysis of carbon nanotubes, Comp. Meth. Appl. Mech. Engng, 193, 1603. ; Chandraseker K. (2006), Modification to the Cauchy-Born rule: Applications in the deformation of the single walled carbon nanotubes, Int. J. Solids Struct, 43, 7128. ; <a target="_blank" href='http://lammps.sandia.gov'>http://lammps.sandia.gov</a>
×