Details Details PDF BIBTEX RIS Title Modeling of strains and stresses of material nanostructures Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2009 Volume vol. 57 Issue No 1 Authors Szefer, G. ; Jasińska, D. Divisions of PAS Nauki Techniczne Coverage 41-46 Date 2009 Identifier DOI: 10.2478/v10175-010-0103-6 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2009; vol. 57; No 1; 41-46 References Ray J. (1983), Molecular dynamics equations of motion for systems varying in shape and size, J. Chem. Phys, 79, 10, 5128. ; Ribarsky M. (1988), Dynamical simulation of stress, strain and finite deformation, Phys. Rev. B, 38, 14, 9522. ; Liu W. (2006), Nano Mechanics and Materials. ; Kitagawa H. (1998), Mesoscopic Dynamics of Fracture, doi.org/10.1007/978-3-662-35369-1 ; Raabe D. (1998), Computational Material Science. ; Li Ch. (2003), A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct, 40, 2487. ; Gao X. (2003), Finite deformation continuum model for single-walled carbon nanotubes, Int. J. Solids Struct, 40, 7329. ; Pantano A. (2004), Mechanics of deformation of single- and-multi walled carbon nanotubes, J. Mech. Phys Solids, 52, 789. ; Odagard G. (2002), Equivalent continuum modeling of nano-structured materials, Comp. Sci. Techn, 62, 14, 1869. ; Tserpes K. (2005), Finite element modeling of single walled carbon nanotubes, Composites B, 36, 468. ; Phillips R. (2001), Crystals, Defects, and Microstructures. ; Parrinello M. (1980), Crystal structure and pair potentials: a molecular dynamics study, Phys. Rev. Lett, 45, 14, 1196. ; Parrinello M. (1982), Strain fluctuations and elastic constants, J. Chem. Phys, 76, 5, 2662. ; Mott P. (1992), The atomic strain tensor, J. Theor. Phys, 101, 140. ; Pyrz R. (2007), Discrete-continuum transition at interfaces of nanocomposites, Bull. Pol. Ac.: Tech, 55, 2, 251. ; Dłużewski P. (2003), Numerical simulation of atomic position in quantum dot by means of molecular statics, Arch. Mech, 55, 5-6, 393. ; Capriz G. (1986), Introductory remarks to the dynamics of continua with microstructure, 15. ; Hoover W. (1986), Molecular Dynamics (Lecture Notes in Physics). ; Landman U. (1992), Fundamentals of Friction: Macroscopic and Microscopic Processes. ; Zhou M. (2003), A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proc. Roy. Soc. Lond. A, 459, 2347. ; Wu H. (2006), Molecular dynamics study of the mechanics of metal nanovires at finite temperature, Europ. J. Mech. A/Solids, 25, 370. ; Subramaniyan A. (2008), Continuum interpretation of virial stress in molecular simulations, Int. J. Solids Struct, 45, 4340. ; Sunyk R. (2003), On higher gradient in continuumatomistic modelling, Int. J. Solids Struct, 40, 6877. ; Sunyk R. (2001), Zur Beschreibung Komplexen Materialverhaltens. ; Sumyk R. (2001), Localization analysis of mixed continuum-atomistic model, J. Phys. IV France, 11, 251. ; Belytschko T. (2003), Coupling methods for continuum model with molecular model, Int. J. Multiscale Comput. Engin, 1, 1, 115. ; Delph T. (2005), Local stresses and elastic constants at the atomic scale, Proc. R. Soc. A, 461, 1869. ; Iijima S. (1991), Helical microtubes of graphitic carbon, Nature, 354, 56. ; M. Chwał, <i>Homogenization of Mechanical Properties of Composite Materials Reinforced by Carbon Nanotubes</i>, PhD Thesis, Cracow Univ. Technology, Krakow, 2007, (in Polish). ; Qian D. (2002), Mechanics of carbon nanotubes, Appl. Mech. Rev, 55, 6, 495. ; Arroyo M. (2003), A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes, Mech. Mater, 35, 193. ; Arroyo M. (2004), Finite element methods for the nonlinear mechanics of crystalline sheets and nanotubes, Int. J. Numer. Meth. Eng, 59, 419. ; Belytschko T. (2002), Atomistic simulations of nanotube fracture, Phys. Rev. B, 65, 23, 235430. ; Qian D. (2004), A multiscale projection method for the analysis of carbon nanotubes, Comp. Meth. Appl. Mech. Engng, 193, 1603. ; Chandraseker K. (2006), Modification to the Cauchy-Born rule: Applications in the deformation of the single walled carbon nanotubes, Int. J. Solids Struct, 43, 7128. ; <a target="_blank" href='http://lammps.sandia.gov'>http://lammps.sandia.gov</a>