Details

Title

A Reconstruction Method of Generalized Sampling Based on Generalized Inverse

Journal title

Metrology and Measurement Systems

Yearbook

2010

Issue

No 2

Authors

Keywords

Hilbert spaces ; generalized sampling ; reconstruction ; generalized inverse

Divisions of PAS

Nauki Techniczne

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Date

2010

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10178-010-0015-7 ; ISSN 2080-9050, e-ISSN 2300-1941

Source

Metrology and Measurement Systems; 2010; No 2

Pages

163-172

References

Papoulis A. (1977), Generalized sampling expansion, IEEE Trans. Circuits Syst, 24, 652. ; Unser M. (1994), A general sampling theory for nonideal acquisition devices, IEEE Trans. Signal Process, 42, 2915. ; S. Chang Eon (2008), Nonuniform Sampling of Bandlimited Functions, IEEE Trans. Informat. Theory, 54, 7, 3814. ; Unser M. (1999), Splines: A perfect fit for signal and image processing, IEEE Signal Process. Mag, 22. ; Eldar Y. (2006), Non-ideal sampling and interpolation from noisy observations in shift-invariant spaces, IEEE Trans. Signal Process, 54, 7, 2636. ; Remani S. (2008), Nonideal Sampling and Regularization Theory, IEEE Trans. Signal Process, 56, 3, 1055. ; Eldar Y. (2003), Sampling and reconstruction in arbitrary spaces and oblique dual frame vectors, J. Fourier Anal. Appl, 1, 9, 77. ; Vaidyanathan P. (2001), Generalizations of the sampling theorem: Seven decades after Nyquist, IEEE Trans. Circuit Syst. I. Fundam. Theory Appl, 48, 9, 1094. ; M. Lu Yue (2008), A Theory for Sampling Signals From a Union of Subspaces, IEEE Trans. Signal Process, 56, 6, 2334. ; Djokovic I. (1997), Generalized sampling theorems in multiresolution subspaces, IEEE Trans. Signal Process, 45, 583. ; Zhaoxuan Z. (2009), Computation of reconstruction function for samples in shift-invariant spaces, Mertol. Meas. Syst, 16, 4, 535. ; Eldar Y. (2004), Sampling, Wavelets and Tomography, 3360.
×