Details

Title

Six-phase doubly fed induction machine-based standalone DC voltage generator

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

No. 1

Authors

Affiliation

Maciejewski, Paweł : Warsaw University of Technology, Institute of Control and Industrial Electronics, 75, Koszykowa St., 00-662 Warszawa, Poland ; Iwański, Grzegorz : Warsaw University of Technology, Institute of Control and Industrial Electronics, 75, Koszykowa St., 00-662 Warszawa, Poland

Keywords

six-phase induction machine ; induction generator ; torque oscillations ; DC voltage generation

Divisions of PAS

Nauki Techniczne

Coverage

e135839

Bibliography

  1.  G.D. Marques, D. Sousa, and M. F. Iacchetti, “Sensorless torque control of a DFIG connected to a DC link”, IEEE Int. Symp. on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics – SLED/PRECEDE’13, Munich, Germany, 2013, pp. 1‒7.
  2.  M.F. Iacchetti and G.D. Marques, “Enhanced torque control in a DFIG connected to a DC grid by a diode rectifier”, 16th Europ. Conf. Power Electron. and Appl. – EPE’14, Lappeenranta, Finland, 1‒9 (2014).
  3.  G.D. Marques and M.F. Iacchetti, “A self-sensing stator-current-based control system of a DFIG connected to a DC-link”, IEEE Trans. Ind. Electron. 62(10), 6140–6150 (2015).
  4.  Y. Li, et al, “The capacity optimization for the static excitation controller of the dual-stator-winding induction generator operating in a wide speed range”, IEEE Trans. Ind. Electron. 56(2), 530–541 (2009).
  5.  H. Misra, A. Gundavarapu, and A.K. Jain, “Control scheme for DC voltage regulation of stand-alone DFIG-DC system”, IEEE Trans. Ind. Electron. 64(4), 2700–2708 (2017).
  6.  N. Yu, H. Nian, and Y. Quan, “A novel DC grid connected DFIG system with active power filter based on predictive current control”, Int. Conf. Electr. Machines and Systems – ICEMS’11, Beijing, China, 2011, pp. 1–5.
  7.  M.F. Iacchetti, G.D. Marques, and R. Perini, “Torque ripple reduction in a DFIG-DC system by resonant current controllers”, IEEE Trans. Power Electron. 30(8), 4244–4254 (2015).
  8.  C. Wu and H. Nian, “Improved direct resonant control for suppressing torque ripple and reducing harmonic current losses of dfig-dc system”, IEEE Trans. Power Electron. 34(9), 8739–8748 (2019).
  9.  C. Wu, et al, “Adaptive repetitive control of DFIG-DC system considering stator frequency variation”, IEEE Trans. Power Electron. 34(4), 3302‒3312 (2018).
  10.  A. Gundavarapu, H. Misra, and A. K. Jain, “Direct torque control scheme for dc voltage regulation of the standalone DFIG-DC system”, IEEE Trans. Ind. Electron. 64(5), 3502–3512 (2017).
  11.  P. Maciejewski and G. Iwanski, “Direct torque control for autonomous doubly fed induction machine based DC generator”, 12th Int. Conf. Ecological Vehicles and Renewable Energies – EVER’17, Monte Carlo, Monaco, 2017, pp. 1–6.
  12.  P. Maciejewski and G. Iwanski, “Study on direct torque control methods of a doubly fed induction machine working as a stand-alone DC voltage generator”, IEEE Trans. Energy Conv. (to be published), doi: 10.1109/TEC.2020.3012589.
  13.  M. Gwóźdź et al, “Generator with modulated magnetic flux for wind turbines”, Bull. Pol. Ac.: Tech. 65(4), 469–478 (2017).
  14.  E. Levi, et al, “Multiphase induction motor drives – a technology status review”, IET Electric Power Applications 1(4), 489–516 (2007).
  15.  F. Bu, Y. Hu, W. Huang, S. Zhuang, and K. Shi, “Wide-speed-range-operation dual stator-winding induction generator DC generating system for wind power applications”, IEEE Trans. Power Electron. 30(2), 561–573 (2015).
  16.  B. Zhang et al., “Comparison of 3-, 5-, and 6-phase machines for automotive charging applications”, IEEE Int .Electric Machines and Drives Conf. 3, 1357–1362 (2003).
  17.  K.S. Khan, W.M. Arshad, and S. Kanerva, “On performance figures of multiphase machines”, 18th Int. Conf. Electr. Machines – ICELMACH’08, Vilamoura, Portugal, 2008, pp. 1‒5.
  18.  S. Williamson and S. Smith, “Pulsating torque and losses in multiphase induction machines”, IEEE Trans. Ind. Appl. 39(4), 986–993 (2003).
  19.  P.G. Holmes and N.A. Elsonbaty, “Cycloconvertor-excited divided-winding doubly-fed machine as a wind-power convertor”, IEE Proc. B Electr. Power Appl. 131(2), 61–69 (1984).
  20.  P. Maciejewski and G. Iwanski, “Modeling of six-phase double fed induction machine for autonomous DC voltage generation”, 10th Int. Conf. Ecological Vehicles and Renewable Energies – EVER’15, Monte Carlo, Monaco, 2015, pp. 1–6.
  21.  G.D. Marques and M.F. Iacchetti, “DFIG topologies for DC networks: a review on control and design features”, IEEE Trans. Power Electron. 34(2), 1299‒1316 (2019).
  22.  N.K. Mishra, Z. Husain, and M. Rizwan Khan, “DQ reference frames for the simulation of multiphase (six phase) wound rotor induction generator driven by a wind turbine for disperse generation”, Electr. Power Appl. IET, 13(11), 1823‒1834, (2019).
  23.  R. Bojoi, et al, “Dual-three phase induction machine drives control; A survey”, IEEJ Trans. Ind. Appl. 126(4), 420–429 (2006).
  24.  R. Nelson and P. Krause, “Induction machine analysis for arbitrary displacement between multiple winding sets”, IEEE Trans. Power Appar. Syst. 93(3), 841–848 (1974).
  25.  D. Forchetti, G. García, and M.I. Valla, “Vector control strategy for a doubly-fed stand-alone induction generator”, Ind. Electron. Conf. – IECON’12, Montreal, Canada, 2, 2002, pp. 991–995.

Date

26.01.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.135839

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; No. 1; e135839
×