Details

Title

Basic Logic Gates in Two Dimensional Photonic Crystals for All Optical Device Design

Journal title

International Journal of Electronics and Telecommunications

Yearbook

2021

Volume

vol. 67

Issue

No 2

Authors

Affiliation

Sonth, Mahesh V. : Department of Electronics and Communication Engineering, CMR Technical Campus, Hyderabad-501401, Telangana, India ; Srikanth, G. : Department of Electronics and Communication Engineering, CMR Technical Campus, Hyderabad-501401, Telangana, India ; Agrawal, Pankaj : Department of Electronics and Communication Engineering, CMR Technical Campus, Hyderabad-501401, Telangana, India ; Premalatha, B. : Department of Electronics and Communication Engineering, CMR College of Engineering & Technology, Hyderabad-501401,Telangana, India

Keywords

Basic gates ; Photonic crystals ; Finite difference time domain ; Plane wave expansion ; Photonic Band Gap

Divisions of PAS

Nauki Techniczne

Coverage

247-253

Publisher

Polish Academy of Sciences Committee of Electronics and Telecommunications

Bibliography

[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, p. 2059, 1987.
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, p. 2486, 1987.
[3] Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzy´nski, and P. A. Deymier, “Two-dimensional phononic crystals: Examples and applications,” Surface Science Reports, vol. 65, no. 8, pp. 229–291, 2010.
[4] R. M. Younis, N. F. Areed, and S. S. Obayya, “Fully integrated and and or optical logic gates,” IEEE Photonics Technology Letters, vol. 26, no. 19, pp. 1900–1903, 2014.
[5] M. Pirzadi, A. Mir, and D. Bodaghi, “Realization of ultra-accurate and compact all-optical photonic crystal or logic gate,” IEEE Photonics Technology Letters, vol. 28, no. 21, pp. 2387–2390, 2016.
[6] E. H. Shaik and N. Rangaswamy, “Phase interference dependent single phc based logic gate structure with t-shaped waveguide as xor, not and or logic gates,” in 2017 Progress in Electromagnetics Research Symposium- Fall (PIERS-FALL). IEEE, 2017, pp. 210–214.
[7] E. Y. Glushko and A. Zakhidov, “Theory of the nonlinear all-optical logical gates based on pbg structures,” in Proceedings of CAOL 2005. Second International Conference on Advanced Optoelectronics and Lasers, 2005., vol. 2. IEEE, 2005, pp. 184–190.
[8] A. Glushko et al., “Nonlinear pbg structures for all-optical signal processing,” in 2006 International Workshop on Laser and Fiber-Optical Networks Modeling. IEEE, 2006, pp. 473–476.
[9] K. Goudarzi, A. Mir, I. Chaharmahali, and D. Goudarzi, “All-optical xor and or logic gates based on line and point defects in 2-d photonic crystal,” Optics & Laser Technology, vol. 78, pp. 139–142, 2016.
[10] S. Mitatha, S. Chaiyasoonthorn, and P. Juleang, “Optical asymmetric key cryptography in rofso for high security using ring resonator system,” in 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2019, pp. 1–4.
[11] A. Macker, A. K. Shukla, and V. P. Dubey, “A novel design of all optical and gate based on 2-d photonic crystal,” in 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT). IEEE, 2017, pp. 1–3.
[12] M. M. Gupta and S. Medhekar, “All-optical not and and gates using counter propagating beams in nonlinear mach–zehnder interferometer made of photonic crystal waveguides,” Optik, vol. 127, no. 3, pp. 1221– 1228, 2016.
[13] A. Rahmani and M. Asghari, “An ultra-compact and high speed all optical or/nor gate based on nonlinear phcrr,” Optik, vol. 138, pp. 314– 319, 2017.
[14] E. H. Shaik and N. Rangaswamy, “Realization of xnor logic function with all-optical high contrast xor and not gates,” Opto-Electronics Review, vol. 26, no. 1, pp. 63–72, 2018.
[15] G. Joseph and V. Kalyani, “Study of quality factor of silicon based not logic gate using fdtd,” in 2014 International Conference on Computational Intelligence and Communication Networks. IEEE, 2014, pp. 909–912.
[16] E. H. Shaik and N. Rangaswamy, “Investigation on phc based t-shaped waveguide as all-optical xor, not, or and and logic gates,” in 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). IEEE, 2017, pp. 1–6.
[17] K. Bhadel and R. Mehra, “Design and simulation of 2-d photonic crystal based all-optical and logic gate,” in 2014 International Conference on Computational Intelligence and Communication Networks. IEEE, 2014, pp. 973–977.
[18] H. Mondal, S. Chanda, M. Sen, and T. Datta, “All optical and gate based on silicon photonic crystal,” in 2015 International Conference on Microwave and Photonics (ICMAP). IEEE, 2015, pp. 1–2.
[19] M. Pirzadi and A. Mir, “Ultra optimized y-defect waveguide for realizing reliable and robust all-optical logical and gate,” in 2015 23rd Iranian Conference on Electrical Engineering. IEEE, 2015, pp. 1067–1071.
[20] H. Mondal, S. Chanda, and P. Gogoi, “Realization of all-optical logic and gate using dual ring resonator,” in 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). IEEE, 2016, pp. 553–556.
[21] B. Ghosh, R. R. Pal, and S. Mukhopadhyay, “A new approach to alloptical half-adder by utilizing semiconductor optical amplifier based mzi wavelength converter,” Optik, vol. 122, no. 20, pp. 1804–1807, 2011.
[22] A. Kabilan, X. S. Christina, and P. E. Caroline, “Photonic crystal based all optical or and xo logic gates,” in 2010 Second International conference on Computing, Communication and Networking Technologies. IEEE, 2010, pp. 1–4.
[23] S. Dey, A. K. Shukla, and V. P. Dubey, “Design of all optical logical or gate based on 2-d photonic crystal,” in 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT). IEEE, 2017, pp. 1–3.
[24] Y. Wan, M. Yun, L. Xia, and X. Zhao, “13 beam splitter based on self-collimation effect in two-dimensional photonic crystals,” Optik, vol. 122, no. 4, pp. 337–339, 2011.
[25] E. haq Shaik and N. Rangaswamy, “High contrast all-optical xor gate with t-shaped photonic crystal waveguide using phase based interference,” in 2017 Fourteenth International Conference on Wireless and Optical Communications Networks (WOCN). IEEE, 2017, pp. 1–3.
[26] A. Coelho Jr, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triplecore photonic crystal fiber,” Journal of Lightwave Technology, vol. 31, no. 5, pp. 731–739, 2013.
[27] P. Rani, Y. Kalra, and R. Sinha, “Design of all optical logic gates in photonic crystal waveguides,” Optik, vol. 126, no. 9-10, pp. 950–955, 2015.
[28] S. Combri´e, A. Martin, G. Moille, G. Lehoucq, A. De Rossi, J.-P. Reithmaier, L. Bramerie, and M. Gay, “An efficient all-optical gate based on photonic crystals cavities and applications,” in 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014, pp. 1–4.
[29] L. E. P. Caballero, J. P. V. Cano, P. S. Guimar˜aes, and O. P. V. Neto, “Effect of structural disorder on photonic crystal logic gates,” IEEE Photonics Journal, vol. 9, no. 5, pp. 1–15, 2017.
[30] P. Rani, Y. Kalra, and R. Sinha, “Realization of and gate in y shaped photonic crystal waveguide,” Optics Communications, vol. 298, pp. 227– 231, 2013.
[31] L. He, W. Zhang, and X. Zhang, “Topological all-optical logic gates based on two-dimensional photonic crystals,” Optics Express, vol. 27, no. 18, pp. 25 841–25 859, 2019.
[32] A. Saharia, N. Mudgal, A. Agarwal, S. Sahu, S. Jain, A. K. Ghunawat, and G. Singh, “A comparative study of various all-optical logic gates,” in Optical and Wireless Technologies. Springer, 2020, pp. 429–437.

Date

2021.05.25

Type

Article

Identifier

DOI: 10.24425/ijet.2021.135972

Source

International Journal of Electronics and Telecommunications; 2021; vol. 67; No 2; 247-253
×