Experimental study on fault ride-through capability of VSC-based HVDC transmission system

Journal title

Archives of Electrical Engineering




vol. 70


No 1


Khoa, Ngo Minh : Faculty of Engineering and Technology, Quynhon University, Vietnam ; Toan, Nguyen An : Faculty of Engineering and Technology, Quynhon University, Vietnam ; Tung, Doan Duc : Faculty of Engineering and Technology, Quynhon University, Vietnam



converter system ; experimental waveform ; fault ride-through ; high-voltage direct current ; voltage sag

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


[1] Hingorani N., Gyugyi L., Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, Willey (2000).
[2] Zhang X.P., Rehtanz C., Pal B., Flexible AC Transmission Systems: Modelling and Control, Springer- Verlag (2006).
[3] Yazdani A., Iravani R., Voltage-sourced converters in power systems: Modeling, Control, and Applications, IEEE Press, Wiley (2010).
[4] Flourentzou N., Agelidis V.G., Demetriades G.D., VSC-Based HVDC Power Transmission Systems: An Overview, IEEE Transactions on Power Electronics, vol. 24, pp. 592–602 (2009).
[5] Sessa S.D., Chiarelli A., Benato R., Availability Analysis of HVDC-VSC Systems: A Review, Energies, vol. 12, no. 14, pp. 1–22 (2019), DOI: 10.3390/en12142703.
[6] Alassi A., Bañales S., Ellabban O., Adam G., MacIver C., HVDC Transmission: Technology Review, Market Trends and Future Outlook, Renewable and Sustainable Energy Reviews, vol. 112, pp. 530–554 (2019), DOI: 10.1016/j.rser.2019.04.062.
[7] Patil P.R., Bhole A.A., A review on enhancing fault ride-through capability of distributed generation in a microgrid, In Proceedings of 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), April 21–22, Vellore, India (2017), DOI: 10.1109/IPACT.2017.8245189.
[8] Yaramasu V., Wu B., Sen P.C., Kouro S., Narimani M., High-power wind energy conversion systems: State-of-the-art and emerging technologies, Proceedings of the IEEE, vol. 103, pp. 740–788 (2015).
[9] Feltes C.,Wrede H.,Koch F.W., Erlich I., Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission, IEEE Transactions on Power Systems, vol. 24, pp. 1537–1546 (2009).
[10] Sang Y., Yang B., Shu H., An N., Zeng F., Yu T., Fault Ride-Through Capability Enhancement of Type-4 WECS in OffshoreWind Farm via Nonlinear Adaptive Control of VSC-HVDC, Processes, vol. 7, no. 540 (2019), DOI: 10.3390/pr7080540.
[11] Vrionis T.D., Koutiva X.I., Vovos N.A., Giannakopoulos G.B., Control of an HVDC Link Connecting a Wind Farm to the Grid for Fault Ride-Through Enhancement, IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 2039–2047 (2007).
[12] Ramtharan G., Arulampalam A., Ekanayake J.B., Hughes F., Jenkins N., Fault ride through of fully rated converter wind turbines with AC and DC transmission systems, IET Renewable Power Generation, vol. 3, iss. 4, pp. 426–438 (2009).
[13] Sun W., Torres-Olguina R.E., Anaya-Laraa O., Investigation on Fault-ride through Methods for VSCHVDC Connected Offshore Wind Farms, Energy Procedia, vol. 94, pp. 29–36 (2016).
[14] Haleem N.M., Rajapakse A.D., Gole A.M., Fernando I.T., Investigation of Fault Ride-Through Capability of Hybrid VSC-LCC Multi-Terminal HVDC Transmission Systems, IEEE Transactions on Power Delivery, vol. 34, iss. 1, pp. 241–250 (2019).
[15] Li Y., Liu C., Tian X., Wang Z., Study on fault ride-through control of islanded wind farm connected to VSC-HVDC grid based on the VSC converter AC-side bus forced short circuit, The Journal of Engineering, vol. 2019, no. 16, pp. 3325–3328 (2019).
[16] Moawwad A., El Moursi M.S., Xiao W., Advanced fault ride-through management scheme for VSC-HVDC connecting offshore wind farms, IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4923–4934 (2016).
[17] Zhou Z., Chen Z., Wang X., Du D., Yang G., Wang Y., Hao L., AC fault ride through control strategy on inverter side of hybrid HVDC transmission systems, Journal of Modern Power Systems and Clean Energy, vol. 7, iss. 5, pp. 1129–1141 (2019).
[18] Feldman R., Farr E., Watson A.J., Clare J.C., Wheeler P.W., Trainer D.R., Crookes R.W., DC fault ride-through capability and STATCOM operation of a HVDC hybrid voltage source converter, IET Generation, Transmission and Distribution, vol. 8, iss. 1, pp. 114–120 (2014).
[19] Oguma K., Akagi H., Low-Voltage-Ride-Through Performance of an HVDC Transmission System Using Two Modular Multilevel Double-Star Chopper-Cells Converters, Electrical Engineering in Japan, vol. 200, pp. 33–44 (2017), DOI: 10.1109/TPEL.2016.2615048.
[20] Yang B., Sang Y.Y., Shi K., Yao W., Jiang L., Yu T., Design and real-time implementation of perturbation observer based sliding-mode control for VSC-HVDC systems, Control Engineering Practice, vol. 56, pp. 13–26 (2016).
[21] Yang B., Jiang L., Yu T., Shua H.C., Zhang C.K., Yao W., Wu Q.H., Passive control design for multiterminal VSC-HVDC systems via energy shaping, International Journal of Electrical Power and Energy Systems, vol. 98, pp. 496–508 (2018).
[22] Dumnic B., Popadic B., Milicevic D., Vukajlovic N., Delimar M., Control Strategy for a Grid Connected Converter in Active Unbalanced Distribution Systems, Energies, vol. 12, no. 7 (2019), DOI: 10.3390/en12071362.
[23] Latorre H.F., Ghandhari M., Soder L., Active and Reactive Power Control of VSC-HVDC, Electrical Power System Research, vol. 78, pp. 1756–1763 (2008).
[24] Li C., Li Y., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–21 (2020).
[25] Yang B., Yu T., Zhang X., Huang L., Shu H., Jiang L., Interactive teaching-learning optimizer for parameter tuning of VSC-HVDC systems with offshore wind farm integration, IET Generation, Transmission and Distribution, vol. 12, no. 3, pp. 678–687 (2018).






DOI: 10.24425/aee.2021.136051


Archives of Electrical Engineering; 2021; vol. 70; No 1; 37-51