Details
Title
Study on the distribution of SAR and temperature in human brain during radio-frequency cosmetic treatmentJournal title
Archives of Electrical EngineeringYearbook
2021Volume
vol. 70Issue
No 1Affiliation
Qi, Xinzhe : Key Laboratory of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P.R. China ; Lu, Mai : Key Laboratory of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P.R. ChinaAuthors
Keywords
electromagnetic exposure ; human head model ; ICNIRP guidelines ; radiofrequency cosmetic instruments ; safety assessmentDivisions of PAS
Nauki TechniczneCoverage
115-127Publisher
Polish Academy of SciencesBibliography
[1] Bidi M., Biological risk assessment of high-voltage transmission lines on worker’s health of electric society, Archives of Electrical Engineering, vol. 69, no. 1, pp. 57–68 (2020).[2] Deltuva R., Lukocius R., Electric and magnetic field of different transpositions of overhead power line, Archives of Electrical Engineering, vol. 66, no. 3, pp. 595–605 (2017).
[3] Alam M., Levy R., Pajvani U., Ramierez A., Guitart J., Veen H., Gladstone B., Safety of radiofrequency treatment over human skin previously injected with medium-term injectable soft-tissue augmentation materials: a controlled pilot trial, Lasers in Surgery and Medicine, vol. 39, no. 5, pp. 468–468 (2007).
[4] Suh D.H., Byun J.E., Lee J.S., Song Y.K., Kim S.H., Clinical efficacy and safety evaluation of a novel fractional unipolar radiofrequency device on facial tightening: A preliminary report, Journal of Cosmetic Dermatology, vol. 16, no. 2, pp. 199–204 (2017).
[5] Lee S.H., Lee D.H., Won C.H., Chang H.W., Kwon H.H., Kim K.H., Chung J.H., Fractional rejuvenation using a novel bipolar radiofrequency system in Asian skin, Dermatol Surgery, vol. 37, no. 11, pp. 1611–1619 (2011).
[6] International Commission on Non-ionizing Radiation Protection Guidelines for limiting exposure to time-varying electric and magnetic fields (up to 300GHz), Health Physics, vol. 74, no. 4, pp. 494–522 (1998).
[7] Alhalabi S.M., Agha O.Q., Hantash B.M., Nonablative radiofrequency for skin rejuvenation: a review of the literature, Expert Review of Dermatology, vol. 7, no. 7, pp. 589–599 (2012).
[8] Sadick N., Tissue tightening technologies: Fact or fiction, Aesthetic Surgery Journal, vol. 28, no. 2, pp. 180–188 (2008).
[9] Nelson A., Beynet D., Lask G., A novel non-invasive radiofrequency dermal heating device for skin tightening of the face and neck, Journal of Cosmetic and Laser Therapy, vol. 17, no. 6, pp. 1–6 (2015).
[10] Friedman J., Gilead L., The Use of Hybrid Radiofrequency Device for the Treatment of Rhytids and Lax Skin, Dermatologic Surgery, vol. 33, no. 5, pp. 547–551 (2007).
[11] Brightman L., Goldman MP., Taub A.F., Sublative Rejuvenation: Experience with a New Fractional Radiofrequency System for Skin Rejuvenation and Repair, Journal of Drugs in Dermatology, vol. 8, no. 11, pp. 9–13 (2009).
[12] Hsu T.S., Kaminer M.S., The use of nonablative radiofrequency technology to tighten the lower face and neck, Seminars in Cutaneous Medicine and Surgery, vol. 22, no. 2, pp. 1–123 (2003).
[13] Rush S., Driscoll D.A., EEG electrode sensitivity–an application of reciprocity, IEEE Transactions on Biomedical Engineering, vol. 16, no. 1, pp. 15–22 (1968).
[14] Huclova S., Baumann D., Talary M., Frohlich J., Sensitivity and specificity analysis of fringing-field dielectric spectroscopy applied to a multi-layer system modelling the human skin, Physics in Medicine and Biology, vol. 56, no. 24, pp. 7777–7793 (2011).
[15] Gabriel C., Bentall R., Grant E.H., Comparison of the dielectric properties of normal and wounded human skin material, Bioelectromagnetics, vol. 8, no. 1, pp. 23–27 (1987).
[16] Huclova S., Erni D., Frohlich J., Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition, Journal of Physics D Applied Physics, vol. 45, no. 45 (2012), DOI: 10.1088/0022-3727/45/2/025301.
[17] Cole K., Cole R., Dispersion and absorption in dielectrics: I. Alternating current characteristics, Journal of Chemical Physics, vol. 9, no. 4, pp. 341–351 (1941).
[18] http://www.itis.ethz.ch/database.pl, accessed January 2020.
[19] http://cn.comsol.com/pl, accessed January 2020.
[20] Rush S., Driscoll D.A., Current distribution in the brain from surface electrodes, Anesthesia and Analgesia, vol. 47, no. 6, pp. 717–723 (1968).
[21] Tamnes K., Ostby Y., Fjell A.M., Westlye L.T., Due P., Walhovd K., Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure, Cerebral Cortex, vol. 20, no. 3, pp. 534–548 (2010).
[22] Gabriel S., Lau W., Gabriel C., The dielectric properties of biological tissues: III parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology, vol. 41, no. 11, pp. 2271–2293 (1996).
[23] Hruza G., Taub F., Collier S., Mulholland R., Skin rejuvenation and wrinkle reduction using a fractional radiofrequency system, Journal of Drugs in Dermatology, vol. 8, no. 3, pp. 259–265 (2009).