Details
Title
Aluminium Loss During Ti-Al-X Alloy Smelting Using the VIM TechnologyJournal title
Archives of Foundry EngineeringYearbook
2021Volume
vo. 21Issue
No 1Affiliation
Smalcerz, A. : Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, 40-019 Katowice, Poland ; Blacha, L. : Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, 40-019 Katowice, Poland ; Łabaj, J. : Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, 40-019 Katowice, PolandAuthors
Keywords
Melting of Ti-Al alloys ; Induction vacuum furnace ; Evaporation of metalsDivisions of PAS
Nauki TechniczneCoverage
11-17Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Kostov, A. & Friedrich, B. (2005). Selection of crucible oxides in molten titanium and titanium aluminium alloys by thermo-chemistry calculation. Journal of Mining and Metallurgy. 41B, 113-125. DOI: 10.2298/JMMB0501113K.[2] Kuang, J.P., Harding, R.A. & Campbell, J. (2000). Investigation into refractories as crucible and mould materials for melting and casting gamma-TiAl alloys. Materials Science and Technology. 16, 1007-1016. DOI: 10.1179/026708300101508964.
[3] Tetsui, T., Kobayashi, T., Mori, T., Kishimoto, T. & Harada, H. (2010). Evaluation of yttrium applicability as a crucible for induction melting of TiAl alloy. Materials Transactions. 51, 1656-1662. DOI: 10.2320/matertrans.MAW20100.
[4] Myszka, D., Karwiński, A., Leśniewski, W. & Wieliczko, P. (2007). Influence of the type of ceramic moulding materials on the top layer of titanium precision castings. Archives of Foundry Engineering. 7(1), 153-156. DOI: 10.7356/ iod.2015.24.
[5] Szkliniarz, A. & Szkliniarz, W. (2011). Assessment quality of Ti alloys melted in induction furnace with ceramic crucible. Solid State Phenomena. 176, 139-148. DOI: 10.4028/www.scientific.net/SSP.176.139.
[6] Jinjie, G., Jun, J., Yuan, S.L., Guizhong, L., Yanqing, S. & Hongsheng, D. (2000). Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys. Metallurgical and Materials Transactions B. 31B, 837-844. DOI: 10.1007/s11663-000-0120-1.
[7] Isawa, T., Nakamura, H. & Murakami, K. (1992). Aluminum evaporation from titanium alloys in EB hearth melting. ISIJ International. 32, 607-615.
[8] Ivanchenko, V., Ivasishin, G. & Semiatin, S. (2003). Evaluation of evaporation losses during electron-beam melting of Ti-Al-V alloys. Metallurgical and Materials Transactions B. 34B, 911-915. DOI: 10.1007/s11663-003-0097-7.
[9] Su, Y., Guo, J., Jia, J., Liu, G. & Liu, Y. (2002). Composition control of a TiAl melt during the induction skull melting (ISM) process. Journal of Alloys and Compounds. 334, 261-266. DOI: 10.1016/S0925-8388(01)01766-2.
[10] Guo, J., Liu, G., Su, Y., Ding, H., Jia, J. & Fu, H. (2002). The critical pressure and impeding pressure of Al evaporation during induction skull melting processing of TiAl. Metallurgical and Materials Transactions A. 31A, 3249-3253. DOI: 10.1007/s11661-002-0311-2.
[11] Gou, J., Liu, Y., Su, Y., Ding, H., Liu, G. & Jia, J. (2000). Evaporation behaviour of aluminum during the cold crucible induction skull melting of titanium aluminum alloys. Metallurgical and Materials Transactions B. 31B, 837-844. DOI: 10.1007/s11663-000-0120-1.
[12] HSC Chemistry ver. 6.1. Outocumpu Research Oy, Pori.
[13] Semiatin, S., Ivanchenko, V., Akhonin, S.O. & Ivasishin, O.M. (2004). Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys. Metallurgical and Materials Transactions B. 35B, 235-245. DOI: 10.1007/s11663-004-0025-5.
[14] Song, J.H., Min, B.T., Kim, J. H., Kim, H.W., Hong, S.W. & Chung, S.H. (2005). An electromagnetic and thermal analysis of a cold crucible melting. International Communications in Heat and Mass Transfer. 32, 1325-1336. DOI: 10.1016/j.icheatmasstransfer.2005.07.015.
[15] Zhu, Y., Yang, Y.Q. & Sun, J. (2004). Calculation of activity coefficients for components in ternary Ti alloys and intermetallics as matrix of composites. Transactions of Nonferrous Metals Society of China. 14, 875-879.
[16] Belyanchikov, L.N. (2010). Thermodynamics of Titanium-Based Melts: I. Thermodynamics of the Dissolution of Elements in Liquid Titanium. Russian Metallurgy. 6, 565-567. DOI: 10.1134/S0036029510060194.
[17] Blacha, L. & Labaj, J. (2012). Factors determining the rate of the process of metal bath components. Metalurgija. 51, 529-533.
[18] Ward, R.G. (1963). Evaporative losses during vacuum induction melting of steel. Journal of the Iron and Steel Institute. 1, 11-15.
[19] Labaj, J. (2010). Copper evaporation kinetics from liquid iron. Wydawnictwo Oldprint. (in Polish).
[20] Ozberk, E. & Guthrie, R. (1985). Evaluation of vacuum induction melting for copper refining. Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy. 94, 146-157.
[21] Ozberk, E. & Guthrie, R. (1986). A kinetic model for the vacuum refining of inductively stirred copper melts. Metallurgical Transactions B. 17, 87-103.
[22] Przyłucki, R., Golak, S., Oleksiak, B. & Blacha, L. (2012). Influence of an induction furnace's electric parameters on mass transfer velocity In the liquid phase. Metalurgija. 1, 67-70.
[23] Blacha, L., Przylucki, R., Golak, S. & Oleksiak, B. (2011). Influence of the geometry of the arrangement inductor - crucible to the velocity of the transport of mass in the liquid metallic phase mixed inductive. Archives of Civil and Mechanical Engineering. 11, 171-179. DOI: 10.1016/S1644-9665(12)60181-2.
[24] Blacha, L., Golak, S., Jakovics, S. & Tucs, A. (2014). Kinetic analysis of aluminum evaporation from Ti-6Al-7Nb. Archives of Metallurgy and Materials. 59, 275-279. DOI: 10.2478/amm-2014-0045
[25] Spitans, S., Jakovics, A., Baake, E. & Nacke, B. (2010). Numerical modelling of free surface dynamics of conductive melt in the induction crucible furnace. Magnetohydrodynamics. 46, 425-436
[26] Spitans, S., Jakovics, A., Baake, E. & Nacke, B. (2011). Numerical modelling of free surface dynamics of melt in an alternate electromagnetic field. Magnetohydrodynamics. 47, 385-397.
[27] Golak, S. & Przylucki, R. (2008). The optimization of an inductorposition for minimization of a liquid metal free surface, Przegląd Elektrotechniczny. 84, 163-164.
[28] Golak, S. & Przyłucki R. (2009). A simulation of the coupled problem of magnetohydrodynamics and a free surface for liquid metals. WIT Transactions of Engineering Science. 48, 67-76. DOI: 10.2495/MPF090061.