Details

Title

Evaluation of the Cause and Consequences of Defects in Cast Metal-Ceramic Composite Foams

Journal title

Archives of Foundry Engineering

Yearbook

2021

Volume

vo. 21

Issue

No 1

Affiliation

Popielarski, P. : Institute of Materials Technology, Poznan University of Technology Piotrowo 3, 61-138 Poznań, Poland ; Sika, R. : Institute of Materials Technology, Poznan University of Technology Piotrowo 3, 61-138 Poznań, Poland ; Czarnecka-Komorowska, D. : Institute of Materials Technology, Poznan University of Technology Piotrowo 3, 61-138 Poznań, Poland ; Szymański, P. : Institute of Materials Technology, Poznan University of Technology Piotrowo 3, 61-138 Poznań, Poland ; Rogalewicz, M. : Institute of Materials Technology, Poznan University of Technology Piotrowo 3, 61-138 Poznań, Poland ; Gawdzińska, K. : Faculty of Marine Engineering, Maritime University of Szczecin, Willowa 2-4, 71-650 Szczecin, Poland

Authors

Keywords

Foams ; Composites ; Casting ; Defects ; Failure mode and effects analysis

Divisions of PAS

Nauki Techniczne

Coverage

81-88

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Duarte, I. & Ferreira, J.M.F. (2016). Composite and nanocomposite metal foams. Materials. 9(2), 79. DOI: 10.3390/ma9020079.
[2] Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G. (2000). Metal Foams. A Design Guide. (1st ed.). Woburn, MA, USA: Butterworth Heinemann.
[3] Marx, J., Portanova, M. & Rabiei A. (2019). Ballistic performance of composite metal foam against large caliber threats. Composite Structures 225, 111032. DOI: 10.1016/j.compstruct.2019.111032.
[4] Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science. 46(6), 559-632. DOI: 10.1016/S0079-6425(00)00002-5.
[5] Orbulov, I.N., Szlancsik, A., Kemény, A. & Kincses, D. (2020). Compressive mechanical properties of low-cost, aluminium matrix syntactic foams. Composites Part A: Applied Science and Manufacturing 135, 105923. DOI: 10.1016/j.compositesa.2020.105923.
[6] Bejger A., Chybowski L. & Gawdzińska K. (2018). Utilizing elastic waves of acoustic emission to assess the condition of spray nozzles in a marine diesel engine. Journal of Marine Engineering & Technology. 17(3), 153-159. DOI: 10.1080/20464177.2018.1492361.
[7] Chunhui, K., Liubiao C., Xianlin, W., Yuan, Z. & Junjie, W. (2018). Thermal conductivity of open cell aluminum foam and its application as advanced thermal storage unit at low temperature. Rare Metal Materials and Engineering. 47(4), 1049-1053. DOI: 10.1016/S1875-5372(18)30118-8.
[8] Banhart, J. & Seeliger, H.W. (2008). Aluminium foam sandwich panels: manufacture, metallurgy and applications. Advanced Engineering Materials. 10(9), 793-802. DOI: 10.1002/adem.200800091.
[9] Lehmhus, D., Weise, J., Szlancsik, A. & Orbulov, I.N. (2020. Fracture toughness of hollow glass microsphere-filled iron matrix syntactic foams. Materials. 13(11), 2566. DOI: 10.3390/ma13112566.
[10] Czarnecka-Komorowska, D., Grześkowiak, K., Popielarski, P., Barczewski, M., Gawdzińska, K. & Popławski, M. (2020). Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: processing−structure−property relationships. Materials. 13(10), 10. DOI: 10.3390/ma13102255.
[11] Przestacki, D., Majchrowski, R. & Marciniak-Podsadna, L. (2016). Experimental research of surface roughness and surface texture after laser cladding. Applied Surface Science. 388(A), 420-423. DOI: 10.1016/j.apsusc.2015.12.093.
[12] Zhou, J., Gao, Z., Cuitino, A.M. & Soboyejo, W.O. (2004). Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams. Materials Science and Engineering A. 386(1-2), 118-128. DOI: 10.1016/ j.msea.2004.07.042.
[13] Yamada, Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M. & Asahina, T. (2000). Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. Materials Science and Engineering A. 280(1), 225-228. DOI: 10.1016/S0921-5093(99)00671-1.
[14] Xia, X.C., Chen, X.W., Zhang, Z., Chen, X., Zhao, W.M., Liao, B. & Hur, B. (2013). Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam. Journal of Magnesium and Alloys. 1(4), 330-335. DOI: 10.1016/j.jma.2013.11.006.
[15] García-Moreno, F. (2016). Commercial applications of metal foams: their properties and production. Materials. 9(2), 85. DOI: 10.3390/ma9020085.
[16] Banhart, J. (2013). Light-metal foams-history of innovation and technological challenges. Advanced Engineering Materials. 15(3), 82-111. DOI: 10.1002/adem.201200217.
[17] Neville, B.P. & Rabiei A. (2008). Composite metal foams processed through powder metallurgy. Materials and Design. 29(2), 388-396. DOI: 10.1016/j.matdes.2007.01.026.
[18] Fuganti, A., Lorenzi, L., Grønsund, A. & Langseth, M. (2000). Aluminum foam for automotive applications. Advanced Engineering Materials. 2(4), 200-204. Doi:10.1002/(SICI)1527-2648(200004)2:4<200::AID-ADEM200>3.0.CO;2-2.
[19] Bhattacharya, A., Calmidi, V.V. & Mahajan, R.L. (2002). Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer. 45(5), 1017-1031. DOI: 10.1016/S0017-9310(01)00220-4.
[20] Miyoshi, T., Itoh M., Akiyama, S. & Kitahara A. (2000). ALPORAS Aluminum foam: production process, properties, and applications. Advanced Engineering Materials. 2(4), 179-183. DOI: 10.1002/(SICI)1527-2648(200004)2:4179:: AID-ADEM179>3.0.CO;2-G.
[21] Sereni, J.G. (2001). Magnetic systems: specific heat. in: Encyclopedia of Materials: Science and Technology. (4986-4993). Elsevier.
[22] Reay, D. (2013). Metal foams: fundamentals and applications. Applied Thermal Engineering. 61(2), 1. DOI: 10.1016/j.applthermaleng.2013.07.002.
[23] Businessinsider.com: million metal foam market analysis, (2017). Retrieved November 20, 2020, from https://markets.businessinsider.com/news/stocks/global-100-million-metal-foam-market-analysis-2017-1009247173
[24] Gawdzińska, K., Grabian, J., Szweycer, M. (2008). Patent No. 211439. Method of producing structural elements from foamed metals.
[25] Kaczyński, P., Ptak M & Gawdzińska, K. (2020). Energy absorption of cast metal and composite foams tested in extremely low and high-temperatures. Materials & Design. 196. DOI: 10.1016/j.matdes.2020.109114.
[26] Aczel, A.D. (2005). Statistics in management. Warszawa: PWN. (in Polish).
[27] Hamrol, A., Mantura W. (2006). Quality Management: Theory and practice (3rd ed.). Warszawa: PWN. (in Polish).
[28] Hamrol, A. (2007). Quality management with examples. Warszawa: PWN. (in Polish).
[29] Gawdzińska, K. (2018). Assessment of the quality of cast material-ceramic composite foams (in Polish). Archives of Foundry Engineering. Katowice–Gliwice: Komisja Odlewnictwa PAN.
[30] Sika, R., Rogalewicz, M., Popielarski, P., Czarnecka-Komorowska, D., Przestacki, D., Gawdzińska, K. & Szymański, P. (2020). Decision support system in the field of defects assessment in the metal matrix composites castings. Materials. 13(16), 3552. DOI: 10.3390/ma13163552.
[31] Gawdzińska, K. (2015). Study of metallic-ceramic composite foams with application of the computer tomograph. Metalurgija. 54 (4), 671-674.
[32] Sobczak, J. (1998). Metal monolithic and composite foams and gazars. A compendium of knowledge about metal cell structures used in modern technical design. Kraków: Instytut Odlewnictwa. (in Polish). [33] Babcsán, N., Leilmeier, D., Degischer, H.P., Flankl, H.J. (2003). In: J. Banhart, N.A. Fleck, A. Mortensen (Eds.) MetFoam 2003: Proceedings of the 3rd International Conference on Cellular Metals and Metal Foaming Technology (pp. 101-106). Berlin (Germany): MIT Pub.

Date

2021.03.10

Type

Article

Identifier

DOI: 10.24425/afe.2021.136082

Source

Archives of Foundry Engineering; 2021; vo. 21; No 1; 81-88
×