Details

Title

Oxide Layer Evolution of Cast Fe24Cr12NiXNb Heat-Resistant Cast Steels at 900°C in Atmospheric Air

Journal title

Archives of Foundry Engineering

Yearbook

2021

Volume

vo. 21

Issue

No 1

Affiliation

Ramos, P.A. : Pontifical Catholic University of Minas Gerais, Brazil ; Ramos, P.A. : Federal Institute of Science and Technology of Minas Gerais, Brazil ; Coelho, R.S. : SENAI CIMATEC, Institute of Innovation for Forming and Joining of Materials, Av. Orlando Gomes, 1845, Piatã, 41650-010, Salvador-BA, Brazil ; Pinto, H.C. : Department of Materials Engineering - SMM, São Carlos School of Engineering – EESC, University of São Paulo – USP, São Carlos, SP, Brazil ; Soldera, F. : Chair of Functional Materials, Department of Materials Science, Saarland University, 66123, Saarbrücken, Saarland, Germany ; Mücklich, F. : Chair of Functional Materials, Department of Materials Science, Saarland University, 66123, Saarbrücken, Saarland, Germany ; Brito, P.P. : Pontifical Catholic University of Minas Gerais, Brazil

Authors

Keywords

Austenitic heat-resistant cast steels ; Microstructure ; Nb-alloyed Steels ; Oxide Scale ; high temperature oxidation

Divisions of PAS

Nauki Techniczne

Coverage

119-124

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Abbasi, M., Park, I., Ro, Y., Ji, Y., Ayer, R. & Shim, J.H. (2019). G-phase formation in twenty-years aged heat-resistant cast austenitic steel reformer tube. Materials Characterization. 148, 297-306. DOI: 10.1016/j.matchar. 2019.01.003.
[2] Madern, N., Monnier, J., Baddour-Hadjean, R., Steckmeyer, A. & Joubert, J.M. (2018). Characterization of refractory steel oxidation at high temperature. Corrosion Science. 132, 223-233. DOI: 10.1016/j.corsci.2017.12.029.
[3] Kondrat’ev, S.Y., Kraposhin, V.S., Anastasiadi, G.P. & Talis, A.L. (2015). Experimental observation and crystallographic description of M7C3 carbide transformation in Fe-Cr-Ni-C HP type alloy. Acta Materialia. 100, 275-281. DOI: 10.1016/j.actamat.2015.08.056.
[4] Dewar, M.P. & Gerlich, A.P. (2013). Correlation between experimental and calculated phase fractions in aged 20Cr32Ni1Nb austenitic stainless steels containing nitrogen . Metallurgical and Materials Transactions A. 44, 627-639. DOI: 10.1007/s11661-012-1457-1.
[5] Pascal, C., Braccini, M., Parry, V., Fedorova, E., Mantel, M., Oquab, D. & Monceau, D. (2017). Relation between microstructure induced by oxidation and room-temperature mechanical properties of the thermally grown oxide scales on austenitic stainless steels. Materials Characterization. 127, 161-170. DOI: 10.1016/j.matchar.2017.03.003.
[6] Chen, H., Wang, H., Sun, Q., Long, C., Wei, T., Kim, S.H., Chen, J., Kim, C., & Jang, C. (2018). Oxidation behavior of Fe-20Cr-25Ni-Nb austenitic stainless steel in high-temperature environment with small amount of water vapor. Corrosion Science. 145, 90-99. DOI: 10.1016/j.corsci. 2018.09.016.
[7] Zhang, X., Li, D., Li, Y. & Lu, S. (2019). Effect of aging treatment on the microstructures and mechanical properties evolution of 25Cr-20Ni austenitic stainless steel weldments with different Nb contents. Journal of Materials Science & Technology. 35, 520-529. DOI: 10.1016/j.jmst.2018.10.017.
[8] Birks, N., Meier, G.H. & Pettit, F.S. (2006). Introduction to the high temperature oxidation of metals, Second edition. Cambridge University Press. DOI: 10.1017/ CBO9781139163903.
[9] Li, D.S., Dai, Q.X., Cheng, X.N., Wang, R.R. & Huang, Y. (2012). High-temperature oxidation resistance of austenitic stainless steel Cr18Ni11Cu3Al3MnNb. Journal of Iron Steel Research International. 19, 74-78. DOI: 10.1016/S1006-706X(12)60103-4.
[10] Kaya, A.A. (2002). Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations. Materials Characterization. 49, 23-34. DOI: 10.1016/S1044-5803(02)00284-X.
[11] Li, H., Zhang, B., Jiang, Z., Zhang, S., Feng, H., Han, P., Dong, N., Zhang, W., Li, G., Fan, G. & Lin, Q. (2016). A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air. Journal of Alloys and Compounds. 686, 326-338. DOI: 10.1016/j.jallcom.2016.06.023.
[12] M. Salehi Doolabi, B. Ghasemi, S.K. Sadrnezhaad, A. Feizabadi, A. HabibollahZadeh, D. Salehi Doolabi, M. AsadiZarch. (2017). Comparison of Isothermal with cyclic oxidation behavior of “Cr-Aluminide” coating on inconel 738LC at 900 °C. Oxidation of Metals. 87, 57-74. DOI: 10.1007/s11085-016-9657-5.
[13] De Almeida, L.H., Ribeiro, A.F. & Le May, I. (2002). Microstructural characterization of modified 25Cr-35Ni centrifugally cast steel furnace tubes. Materials Characterization. 49, 219-229. DOI: 10.1016/S1044-5803(03)00013-5.
[14] Nishimoto, K., Saida, K., Inui, M. & Takahashi, M. (2001). Changes in microstructure of HP-modified, heat-resisting cast alloys under long-term aging. Repair weld cracking of service-exposed, HP-modified, heat-resisting cast alloys (2nd report). Welding International. 15(7), 509-517. DOI: 10.1080/ 09507110109549397.
[15] Joubert, J.M., St-Fleur, W., Sarthou, J., Steckmeyer, A. & Fournier, B. (2014). Equilibrium characterization and thermodynamic calculations on highly alloyed refractory steels. Calphad Comput. Coupling Phase Diagrams Thermochem. 46, 55-61. DOI: 10.1016/j.calphad. 2014.02.002.
[16] Ramos, P.A., Coelho, R.S., Pinto, H.C., Soldera, F., Mücklich, F. & Brito, P. (2021). Microstructure and cyclic oxidation behavior of modified Nb-alloyed A297 HH refractory austenitic stainless steel. Materials Chemistry and Physics. 263, 124361. DOI: 10.1016/j.matchemphys. 2021.124361.
[17] Ramos, P.A., Coelho, R.S., Soldera, F., Pinto, H.C., Mücklich, F. & Brito,P. (2020). Residual stress analysis in thermally grown oxide scales developed on Nb-alloyed refractory austenitic stainless steels. Corrosion Science. 178, 109066. DOI: 10.1016/j.corsci.2020.109066.
[18] McCafferty E. (2010). Introduction to corrosion science. Springer Science & Business Media. DOI: 10.1007/978-1-4419-0455-3.

Date

2021.03.25

Type

Article

Identifier

DOI: 10.24425/afe.2021.136087

Source

Archives of Foundry Engineering; 2021; vo. 21; No 1; 119-124
×