Details
Title
Formation Mechanism for the TiN–MnS Complex Inclusions in Tire Cord SteelJournal title
Archives of Foundry EngineeringYearbook
2021Volume
vo. 21Issue
No 2Affiliation
Lei, Jialiu : Hubei Polytechnic University, China ; Wang, Xiumin : Hubei Polytechnic University, China ; Zhao, Dongnan : Hubei Polytechnic University, China ; Fu, Yongjun : Hubei Polytechnic University, ChinaAuthors
Keywords
Thermodynamic calculations ; Formation mechanism ; TiN–MnS complex inclusions ; Tire cord steelDivisions of PAS
Nauki TechniczneCoverage
57-64Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Abushosha, R., Vipond, R. & Mintz, B. (1991). Influence of titanium on hot ductility of as cast steels. Materials Science & Technology. 7(7), 613-621.[2] Chen, Z., Li, M., Wang, X., He, S. & Wang, Q. (2019). Mechanism of floater formation in the mold during continuous casting of Ti-stabilized austenitic stainless steels. Metals. 9, 635-649.
[3] Karmakar, A., Kundu, S., Roy, S., Neogy, S., Srivastava, D. & Chakrabarti, D. (2014). Effect of microalloying elements on austenite grain growth in Nb–Ti and Nb–V steels. Materials Science and Technology. 30(6), 653-664.
[4] Reyes-Calderón, F., Mejía, I., Boulaajaj, A. & Cabrera, J.M. (2013). Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high–Mn austenitic twinning induced plasticity (TWIP) steel. Materials Science and Engineering: A. 560, 552-560.
[5] Chen, C.Y., Jiang, Z.H., Li, Y., Zheng, L.C., Huang, X.F. & Yang, G. (2019). State of the art in the control of inclusions in tire cord steels and saw wire steels–A Review. Steel Research International. 6, 1-13.
[6] Lei, J.L., Zhao, D.N., Fu, Y.J., & Xu, X.F. (2019). Research on the characterization of Ti inclusions and their precipitation behavior in tire cord steel. Archives of Foundry Engineering. 19(3), 33-37.
[7] Cui, H.Z. & Chen, W. Q. (2012). Effect of boron on morphology of inclusions in tire cord steel. Journal of Iron and Steel Research International. 19( 4), 22-27.
[8] Wu, S., Liu, Z., Zhou, X., Yang, H. & Wang, G. (2017). Precipitation behavior of Ti in high strength steels. Journal of Central South University. 24(12), 2767-2772.
[9] Petit, J., Sarrazin-Baudoux, C. & Lorenzi, F. (2010). Fatigue crack propagation in thin wires of ultrahigh strength steels. Procedia Engineering. 2, 2317-2326.
[10] Liu, H.Y., Wang, H.L., Li, L., Zheng, J.Q., Li, Y.H. & Zeng, X.Y. (2011). Investigation of Ti inclusions in wire cord steel. Ironmaking and Steelmaking. 38(1), 53-58.
[11] Cai, X.F., Bao, Y.P., Wang, M., Lin, L., Dai, N.C. & Gu, C. (2015). 69Investigation of precipitation and growth behavior of Ti inclusions in tire cord steel. Metallurgical Research and Technology. 112(4), 407-418.
[12] Lei, J.L., Xue, Z.L., Jiang, Y.D., Zhang, J. & Zhu, T.T. (2012). Study on TiN precipitation during solidification for hypereutectoid tire cord steel. Metalurgia International. 17(9), 10-15.
[13] Chen, J.X. (2010). Common charts and databook for steelmaking. (2nd ed.). Beijing: Metallurgical Industry Press.
[14] Clyne, T.W., Wolf, M. & Kurz, W. (1982). The effect of melt composition on solidification cracking of steel with particular reference to continuous casting. Metallurgical and Materials Transactions B. 13(2), 259-266.
[15] Wada, H., & Pehlke, R.D. (1985). Nitrogen solubility and nitride formation in austenitic Fe–Ti alloys. Metallurgical and Materials Transactions B. 16(4), 815-822.
[16] Ma, Z., & Janke, D. (1998). Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ International. 38(1), 46-52.
[17] Darken, L.S. (1967). Thermodynamics of binary metallic solutions. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers. 239(1), 80-89.
[18] Yoshikawa, T., & Morita, K. (2007). Influence of alloying elements on the thermodynamic properties of titanium in molten steel. Metallurgical and Materials Transactions B. 38(4), 671-680.
[19] Kim, W., Jo, J., Chung, T., Kim, D. & Pak, J. (2007). Thermodynamics of titanium, nitrogen and TiN formation in liquid iron. ISIJ International. 47(8), 1082-1089.
[20] Ma, W.J., Bao, Y.P., Zhao, L.H., & Wang, M. (2014). Control of the precipitation of TiN inclusions in gear steels. International Journal of Minerals Metallurgy and Materials. 21(3), 234-239.
[21] Huang, X.H. (2001). Theory of Iron and Steel Metallurgy. (3rd ed.). Beijing: Metallurgical Industry Press.
[22] Won, Y.M. & Thomas, B.G. (2011). Simple model of micro–segregation during solidification of steels. Metallurgical and Materials Transactions A. 32(7), 1755-1767.
[23] Ohnaka, I. (1986). Mathematical-analysis of solute redistribution during solidification with diffusion in solid–phase. ISIJ International. 26(12), 1045-1051.
[24] Maugis, P. & Gouné, M. (2005). Kinetics of vanadium carbonitride precipitation in steel: a computer model. Acta Materialia. 53(12), 3359-3367.
[25] Manohar, P.A., Dunne, D.P., Chandra, T. & Killmore, C.R. (2007). Grain growth predictions in microalloyed steels. ISIJ International, 36(2), 194-200.
[26] Choudhary, S.K. & Ghosh, A. (2009). Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ International. 49(12), 1819-1827.
[27] Gao, S., Wang, M., Guo, J.L., Wang, H. & Bao, Y.P. (2019). Extraction, distribution, and precipitation mechanism of TiN–MnS complex inclusions in Al-killed titanium alloyed interstitial free steel. Metals and Materials International. 12, 1-9.