Details
Title
Contribution of 3D printing technology for craniofacial surgeryJournal title
Folia Medica CracoviensiaYearbook
2020Volume
Vol. 60Issue
No 4Authors
Affiliation
Skrzat, Janusz : Department of Anatomy, Jagiellonian University Medical College, Kraków, PolandKeywords
3D printing ; mesh model ; craniofacial surgery ; computed tomographyDivisions of PAS
Nauki MedyczneCoverage
31-40Publisher
Oddział PAN w Krakowie; Uniwersytet Jagielloński – Collegium MedicumBibliography
1. Ameil M., Delattre J.F., Cordobes B., Flament J.B.: Computerized reconstruction of an anatomical structure based on digitized sections. Anat Clin. 1984; 5 (4): 261–264. doi: 10.1007/BF01798749.2. Vannier M.W., Marsh J.L., Warren J.O.: Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology. 1984; 150 (1): 179–184. doi: 10.1148/radiology.150.1.6689758.
3. Groth C., Kravitz N.D., Jones P.E, Graham J.W., Redmond W.R.: Three-dimensional printing technology. J Clin Orthod. 2014; 48 (8): 475–485. PMID: 25226040.
4. Onuh S.O., Yusuf Y.Y.: Rapid prototyping technology: applications and benefits for rapid product development. J Intell Manuf. 1999; 10 (3–4): 301–311. doi: 10.1023/ A:1008956126775.
5. Anderson J.R., Thompson W.L., Alkattan A.K, Diaz O., Klucznik R., Zhang Y.J., Britz G.W., Grossman R.G., Karmonik C.: Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg. 2016; 8: 517–520. doi: 10.1136/neurintsurg-2015-011686.
6. Anderl H., Zur Nedden D., Mühlbauer W., Twerdy K., Zanon E., Wicke K., Knapp R.: CT-guided stereolithography as a new tool in craniofacial surgery. Br J Plastic Surg. 1994; 47 (1): 60–64. doi: 10.1016/0007-1226(94)90121-x.
7. Eltorai A.E., Nguyen E., Daniels A.H.: Three-dimensional printing in orthopedic surgery. Orthopedics. 2015; 38 (11): 684–687. doi : 10.3928/01477447-20151016-05.
8. Hoch E., Tovar G.E., Borchers K.: Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg. 2014; 46 (5): 767– 778. doi: 10.1093/ejcts/ezu242.
9. Kamali P., Dean D., Skoracki R., Koolen P.G., Paul M.A., Ibrahim A.M., Lin S.J.: The current role of three-dimensional printing in plastic surgery. Plast Reconstr Surg. 2016; 137 (3): 1045–1055. doi: 10.1097/01.prs.0000479977.37428.8e.
10. VanKoevering K.K., Hollister S.J., Green G.E.: Advances in 3-dimensional printing in otolaryngology: a review. JAMA Otolaryngol Head Neck Surg. 2017; 143 (2): 178– 183. doi: 10.1001/jamaoto.2016.3002.
11. Pham D.L., Xu C., Prince J.L.: Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2 (1): 315–337. doi: 10.1146/annurev.bioeng.2.1.315.
12. Sharma N., Aggarwal L.M.: Automated medical image segmentation techniques. J Med Phys. 2010; 35 (1): 3–14. doi: 10.4103/0971-6203.58777.
13. Withey D.J., Koles Z.J.: A review of medical image segmentation: methods and available software. Int J Bioelectromagn. 2008; 10 (3): 125–148.
14. Pal N.R., Pal S.K.: A review on image segmentation techniques. Patt Rec. 1993; 26 (9): 1277–1294. doi: 10.1016/0031-3203(93)90135-J.
15. Sahoo P.K., Soltani S.A. Wong A.K.C.: A survey of thresholding techniques. Comput Vis Graph Im Proc. 1988; 41 (2): 233–260. doi: 10.1016/0734-189X(88)90022-9.
16. Winder J., Bibb R.: Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2005; 63 (7): 1006–1015. doi: 10.1016/j.joms.2005.03.016.
17. Fleiter T., Hoffmann R., Niemeier R., Claussen C.D.: Preoperative planning and follow-up with spiral CT and stereolithographic models in craniofacial surgery. In Advances in CT III. Springer, Berlin, Heidelberg 1994; 149–156.
18. Mankovich N.J., Cheeseman A.M., Stoker N.G.: The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990; 3 (3): 200–203. doi: 10.1007/BF03167610.
19. Stoker G.N., Mankovich N.J., Valentino D.: Stereolithographic models for surgical planning: preliminary report. J Oral Maxillofac Surg. 1992; 50: 466–471. doi: 10.1016/ s0278-2391(10)80317-9.
20. Eppley B.L., Sadove A.M.: Computer-generated patient models for reconstruction of cranial and facial deformities. J Craniofac Surg. 1998; 9 (6): 548–556. doi: 10.1097/ 00001665-199811000-00011.
21. Müller A., Krishnan K.G., Uhl E., Mast G.: The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003; 14 (6): 899–914. doi: 10.1097/00001665-200311000-00014.
22. Singare S., Yaxiong L., Dichen L., Bingheng L., Sanhu H., Gang L.: Fabrication of customised maxillo-facial prosthesis using computer-aided design and rapid prototyping techniques. Rapid Prototyp J. 2006; 12 (4): 206–213. doi: 10.1108/ 13552540610682714.
23. Kermer C., Lindner A., Friede I., Wagner A., Millesi W.: Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxillofac Surg. 1998; 26 (3): 136–139. doi: 10.1016/s1010-5182(98) 80002-4.
24. Kernan B.T., Wimsatt J.A.: Use of a stereolithography model for accurate, preoperative adaptation of a reconstruction plate. J Oral Maxillofac Surg. 2000; 58 (3): 349– 351. doi: 10.1016/s0278-2391(00)90071-5.
25. Ehrenberg R.: Plastic implant replaces three-quarters of man’s skull. Science News. March 11, 2013.
26. Sunderland I.R., Edwards G., Mainprize J., Antonyshyn O.: A technique for intraoperative creation of patient-specific titanium mesh implants. Plast Surg (Oakv). 2015; 23 (2): 95–99. doi: 10.4172/plastic-surgery.1000909.
27. Bell R.B., Markiewicz M.R.: Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg. 2009; 67 (12): 2559–2570. doi: 10.1016/j.joms.2009.07.098.
28. D’Urso P.S., Atkinson R.L., Lanigan M.W., Earwaker W.J., Bruce I.J., Holmes A., Barker T.M., Effeney D.J., Thompson R.G.: Stereolithographic (SL) biomodelling in craniofacial surgery. Br J Plast Surg. 1998; 51 (7): 522–530. doi: 10.1054/ bjps.1998.0026.
29. D’Urso P.S., Redmond M.J.: A method for the resection of cranial tumours and skull reconstruction. Br J Neurosurg. 2000; 14 (6): 555–559. doi: 10.1080/ 02688690020005581.
30. Erickson D.M., Chance D., Schmitt S., Mathis J.: An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg. 1999; 57 (9): 1040–1043.
31. Cui J., Chen L., Guan X., Ye L., Wang H., Liu L.: Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J Oral Maxillofac Surg. 2014; 72 (6): 1138-e1-14. doi: 10.1016/j.joms.2014.02.023.
32. Frühwald J., Schicho K.A., Figl M., Benesch T., Watzinger F., Kainberger F.: Accuracy of craniofacial measurements: computed tomography and three-dimensional computed tomography compared with stereolithographic models. J Craniofac Surg. 2008; 19 (1): 22–26. doi: 10.1097/scs.0b013e318052ff1a.
33. Choi J.Y., Choi J.H., Kim N.K., Kim Y., Lee J.K., Kim M.K., Lee J.H., Kim M.J.: Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg. 2002; 31.(1): 23–32. doi: 10.1054/ijom.2000.0135.
34. Barker T.M., Earwaker W.J., Lisle D.A.: Accuracy of stereolithographic models of human anatomy. Australas Radiol. 1994; 38 (2): 106–111. doi: 10.1111/j.1440-1673.1994.tb00146.x.
35. Chang P.S., Parker T.H., Patrick C.W., Miller M.J.: The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg. 2003; 14 (2): 164–170. doi: 10.1097/00001665-200303000-00006.
36. Nizam A., Gopal R., Naing N.L., Hakim A.B., Samsudin A.R.: Dimensional accuracy of the skull models produced by rapid prototyping technology using stereolithography apparatus. Arch Orofac Sci. 2006; 1: 60–66.
37. Chia H.N., Wu B.M.: Recent advances in 3D printing of biomaterials. J Biol Eng. 2015; 9 (1): 4. doi: 10.1186/s13036-015-0001-4.
38. Hsieh T.Y., Dedhia R., Cervenka B., Tollefson T.T.: 3D Printing: current use in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg. 2017; 25 (4): 291–299. doi: 10.1097/MOO.0000000000000373.
39. Jakus A.E., Rutz A.L., Shah R.N.: Advancing the field of 3D biomaterial printing. Biomed Mater. 2016; 11 (1): 014102. doi: 10.1088/1748-6041/11/1/014102.
40. Poukens J., Haex J., Riediger D.: The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg. 2003; 8 (3): 146–154. doi: 10.3109/10929080309146049.
41. Wang Y., Ni M., Tang P.F., Li G.: Novel application of HA-TCP biomaterials in distraction osteogenesis shortened the lengthening time and promoted bone consolidation. J Orthop Res. 2009; 27 (4): 477–482. doi: 10.1002/jor.20782.
42. Ballard D.H., Trace A.P., Ali S., Hodgdon T., Zygmont M.E., DeBenedectis C.M., Smith S.E., Richardson M.L., Patel M.J., Decker S.J., Lenchik L.: Clinical Applications of 3D Printing: Primer for Radiologists. Acad Radiol. 2018; 25 (1): 52–65. doi: 10.1016/j.acra.2017.08.004.
43. Chepelev L., Giannopoulos A., Tang A., Mitsouras D., Rybicki F.J.: Medical 3D printing: methods to standardize terminology and report trends. 3D Print Med. 2017; 3 (1): 4. doi: 10.1186/s41205-017-0012-5.
44. Bauermeister A.J., Zuriarrain A., Newman M.I.: Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016; 77 (5): 569– 576. doi: 10.1097/SAP.0000000000000671.
45. Pham D.L., Xu C., Prince J.L.: Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000; 2 (1): 315–337. doi: 10.1146/annurev.bioeng.2.1.315.
46. Waran V., Devaraj P., Hari Chandran T., Muthusamy K.A., Rathinam A.K., Balakrishnan Y.K., Tung T.S., Raman R., Rahman Z.A.: Three-dimensional anatomical accuracy of cranial models created by rapid prototyping techniques validated using a neuronavigation station. J Clin Neurosci. 2012; 19 (4): 574–577. doi: 10.1016/j.jocn.2011.07.031.