Details
Title
The Effects of Grain Boundary Structures on Mechanical Properties in Nanocrystalline Al AlloyJournal title
Archives of Metallurgy and MaterialsYearbook
2021Volume
vol. 66Issue
No 4Authors
Affiliation
Jang, Jin Man : Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea ; Jang, Jin Man : Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea ; Lee, Wonsik : Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea ; Ko, Se-Hyun : Korea Institute of Industrial Technology, Incheon, 21999, Republic of KoreaKeywords
nanocrystalline Al alloy ; Young’s modulus ; hardness ; nanoindentation ; low and high angle grain boundaryDivisions of PAS
Nauki TechniczneCoverage
971-975Publisher
Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Committee of Materials Engineering and Metallurgy of Polish Academy of SciencesBibliography
[1] J. Cintas, E.S. Caballero, J.M. Montes, F.G. Cuevas, C. Arevalo, Adv. Mater. Sci. Eng. 2014, 1 (2014).[2] Y. Liu, Z. Han, H. Cong, Wear 268, 976 (2010).
[3] G . Jeong, J. Park, S. Nam, S.E. Shin, J. Shin, D. Bae, H. Choi, Archives of Metallurgy and Materials 60 (2), 1287 (2015).
[4] M. Yu. Gutkin, I.A. Ovid’ko, N.V. Skiba, Phys. Solid State 47, 1662 (2005).
[5] H. Van Swygenhoven, M. Spaczer, A. Caro, Acta Mater. 47, 3117 (1999).
[6] Y. Xun, M.J. Tan, K.M. Liew, Scripta Mater. 61 (1), 76 (2009).
[7] Y. Xun, M.J. Tan, K.M. Liew, J. Mater. Processing Tech. 162-163, 429 (2005).
[8] T.J. Rupert, J. Appl. Phys. 114, 033527 (2013).
[9] T.R. McNelly, D.L. Swisher, M.T. Perez-Prado, Metall. Mater. Trans. A 33, 279 (2002).
[10] Y. Rao, A.J. Waddon, R.J. Farris, Polymer 42 (13), 5925 (2001).
[11] A.C. Fisher-Crips, Nanoindentation, Springer-Verlag, New York 2002.
[12] M.S. Asl, B. Nayebi, A. Motallebzadeh, M. Shokouhimehr, Compos. B Eng. 175, 107153 (2019).
[13] S . Sinha, R. Mirshams, T. Wang, S. Nene, M. Frank, K. Liu, R. Mishra, Sci. Rep. 9, 6639 (2019).
[14] L. Melk, J.J.R. Rovira, F. García-Marro, M.-L. Antti, B. Milsom, M.J. Reece, M. Anglada Ceram. Int. 41, 2453 (2015).
[15] G . He, C. Xu, C. Liu, H. Liu, Mater. Des. 202, 109459 (2021).
[16] Q. Duan, H. Pan, B. Fu, J. Yan, Steel Res. Int. 2019, 1900317 (2019).
[17] C.S. Pande, K.P. Cooper, Prog. Mater. Sci. 54 (6), 689 (2009).
[18] C. Zheng, Y.W. Zhang, Mater. Sci. Eng. A 423 (1-2), 97 (2006).
[19] C.-W. Nan, X. Li, K. Cai, J. Tong, J. Mater. Sci. Letters 17 (22), 1917 (1998).
[20] M. Becton, X. Wang, Phys. Chem. Chem. Phys. 17, 21894 (2015).
[21] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A 265, 188 (1999).
[22] P .R. Rios, F.S. Jr, H.R.Z. Sandim, R.L. Plaut, A.F. Padiha, Mater. Research 8 (3), 225 (2005).
[23] AH. Cottrell In: Chalmers B, editor. Theory of dislocations, Progress in Metal Physics. 4, 251 (1953) London, Pergamon Press.
[24] R .W. Cahn, Proceedings of the Physical Society, Ser. AI. 63 (364), 323 (1950).
[25] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992).
[26] D. Jang, M. Atzmon, J. App. Phy. 93 (11), 9282 (2003).