Details
Title
Frequency of free vibration in systems with power-law restoring forceJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
2Authors
Affiliation
Grega, Ivan : Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom ; Grega, Robert : Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovakia ; Homisin, Jaroslav : Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, 042 00 Kosice, SlovakiaKeywords
power-law restoring force ; nonlinear vibration ; dimensional analysis ; numerical simulationsDivisions of PAS
Nauki TechniczneCoverage
e136723Bibliography
- M. Moravec et al., “Development of psychoacoustic model based on the correlation of the subjective and objective sound quality assessment of automatic washing machines”, Appl. Acoust. 140, 178–182 (2018).
- M. Puškar et al., “Possibilities for reducing combustion engine fuel consumption and gas emissions”, Pol. J. Environ. Stud. 27(4), 1691–1698 (2018).
- L. Jakubovičová et al., “Impact analysis of mutual rotation of roller bearing rings on the process of contact stresses in rolling elements”, Manuf. Technol. 13(1), 50–54 (2013).
- Y. Li et al., “Analysis on electromechanical coupling vibration characteristics of in-wheel motor in electric vehicles considering air gap eccentricity”, Bull. Pol. Acad. Sci. Tech. Sci. 67(5), 851–862 (2019).
- B. Błachowski and W. Gutkowski, “Graph based discrete optimization in structural dynamics”, Bull. Pol. Acad. Sci. Tech. Sci. 62(1), 91–102 (2014).
- M.P. Kazmierkowski, “Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications”, IEEE Ind. Electron. Mag. 13(4), 138–138 (2019).
- W. Jarzyna, “A survey of the synchronization process of synchronous generators and power electronic converters”, Bull. Pol. Acad. Sci. Tech. Sci. 67(6), 1069–1083 (2019).
- M. Wieczorek, M. Lewandowski, and W. Jefimowski, “Cost comparison of different configurations of a hybrid energy storage system with battery-only and supercapacitor-only storage in an electric city bus”, Bull. Pol. Acad. Sci. Tech. Sci. 67(6), 1095–1106 (2019).
- R. Grega et al., “Failure analysis of driveshaft of truck body caused by vibrations”, Eng. Fail. Anal. 79, 208–215 (2017).
- THE AA: European emission standards, Limits to improve air quality and health, (2017).
- L. Jakubovičová et al., “Transport Duty Cycle Measurement of Hybrid Drive Unit for Mixing Drum”, Adv. Intell. Syst. Comput. 393, 219–224 (2016).
- P. Charles et al., “Detecting the crankshaft torsional vibration of diesel engines for combustion related diagnosis”, J. Sound Vib. 321, 1171–1185 (2009).
- M. Sága et al., “Modeling and experimental analysis of the aluminium alloy fatigue damage in the case of bending – torsion loading”, Procedia Eng. 48, 599–606 (2012).
- L. Konieczny et al., “Determination of the effect of tire stiffness on wheel accelerations by the forced vibration test method”, J. Vibroengineering 17, 4469–4477 (2005).
- A. Wedin, “Reduction of Vibrations in Engines using Centrifugal Pendulum Vibration Absorbers”, Chalmers University of Technology, 2011.
- W. Sun et al., “Nonlinear Characteristics Study and Parameter Optimization of DMF-RS”, SAE Int. J. Passeng. Cars – Mech. Syst. 4(2), 1050–1057 (2011).
- M. Zink and M. Hausner, “LuK clutch systems and torsional dampers”, Schaeffler Symposium, 2010, pp. 8–27.
- R. Grega et al., “The Reduction Of Vibrations In A Car – The Principle Of Pneumatic Dual Mass Flywheel”, Zeszyty naukowe Politechniki Śląskiej 84, 21–28 (2014).
- J. Krajňák et al., “The analysis of the impact of vibrations on noisiness of the mechanical system”, Pneumatyka 17, 21–26 (2016).
- J. Homisin et al., “Removal of systematic failure of belt conveyor drive by reducing vibrations”, Eng. Fail. Anal. 99, 192‒202 (2019).
- J. Krajnak et al., “Effect of helium on mechanical properties of flexible pneumatic coupling”, Sci. J. Sil. Uni. Tech. – Ser. Trans. 73, 63–69 (2011).
- P. Baran and R. Grega, “Comparison of dynamic properties of dual mass flywheel”, Diagnostyka 16, 29–33 (2015).
- J. Homisin et al., “Continuous tuning of ship propulsion system by means of pneumatic tuner of torsional oscillation”, Int. J. Mar. Eng.: Trans. R. Inst. Nav. Arch. 158 (A3), 231–238 (2016).
- Ye-Wei Zhang et al., “Nonlinear energy sink with inerter”, Mech. Sys. Sig. Proc. 125, 52–64 (2019).
- D. Qiu et al., “Design of cubic stiffness for the absorber of Nonlinear Energy Sink”, CFA/VISHNO, 2016.
- A. Haris et al., “A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities”, Appl. Math. Model 46, 674–690 (2017).
- D. Maffiodo et al., “Finite life fatigue design of spiral springs of dual-mass flywheels: Analytical estimation and experimental results”, AIME 10(6), 1–13 (2018).
- J. Homisin, “Characteristics of pneumatic tuners of torsional oscillation as a result of patent activity”, Acta Mech. Autom. 10(4), 316–323 (2016).
- R. Grega and J. Krajnak, “The pneumatic dual-mass flywheel”, Sci. J. Sil. Uni. Tech. – Ser. Trans. 76, 19–24 (2012).
- I. Grega and R. Grega, “Simple approach for pure cubic nonlinear vibrating systems”, Proj. bad. eks.: Tom 1. – Bielsko-Biała 91–100 (2019).
- I. Kovacic and M. Brennan, “The Duffing Equation: Nonlinear Oscillators and their Behaviour”, Wiley, Chichester, 2011.
- Z. Rakaric and I. Kovacic, “Approximations for motion of the oscillators with a non-negative real-power restoring force”, J. Sound Vib. 330(2), 321–336 (2011).
- E. Buckingham, “On Physically Similar Systems; Illustrations of the Use of Dimensional Equations”, Phys. Rev. 4(4), 345–376 (1914).
- I. Grega et al., “The potential for use of cubic nonlinear systems in internal combustion engine drivetrains”, XXV Polish-Slovak Scientific Conference on Machine Modelling and Simulations, 2020.