Details

Title

Multivoltaic GaSe>SmCl3> clathrate as new hybrid functional nanostructure

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

2

Authors

Affiliation

Ivashchyshyn, Fedir : Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland ; Ivashchyshyn, Fedir : Lviv Polytechnic National University, Bandera 12, Lviv, 79013, Ukraine ; Pidluzhna, Anna : Lviv Polytechnic National University, Bandera 12, Lviv, 79013, Ukraine ; Calus, Dariusz : Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland ; Hryhorchak, Orest : Ivan Franko Lviv National University, Cyril and Methodius 8, Lviv, 79005, Ukraine ; Chabecki, Piotr : Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland ; Makarchuk, Oleksandr : Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland ; Makarchuk, Oleksandr : Lviv Polytechnic National University, Bandera 12, Lviv, 79013, Ukraine

Keywords

impedance analysis ; GaSe ; multiferroic ; thermogalvanic effect ; negative capacity

Divisions of PAS

Nauki Techniczne

Coverage

e136726

Bibliography

  1.  M.J. Fiebig, “Revival of the magnetoelectric effect”, Phys. D Appl. Phys. 38, R123-R152 (2005).
  2.  D.I. Khomskii, “Multiferroics: Different ways to combine magnetism and ferroelectricity”, J. Magn. Magn. Mater. 306, 1‒8 (2006).
  3.  W. Eerenstein, N.D. Mathur, and J.F. Scott, “Multiferroic and magnetoelectric materials”, Nature. 442, 759‒765 (2006).
  4.  Y. Tokura, “Materials science. Multiferroics as quantum electromagnets”, Science 312(5779), 1481‒1482 (2006).
  5.  R. Ramesh and N.A. Spaldin, “Multiferroics: progress and prospects in thin films”, Nature Mater. 6(1), 21‒29 (2007).
  6.  S. Cheong and M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity”, Nature Mater. 6(1) 13‒20 (2007).
  7.  A.P. Pyatakov and A.K Zvezdin, “Magnetoelectric and multiferroic media”, Phys.-Usp. 55(6), 557‒581 (2012).
  8.  A.W. Hübler and O. Onyeama, “Digital quantum batteries: Energy and information storage in nanovacuum tube arrays”, Wiley Periodicals Inc. Complexity. 15(5), 48‒5 (2010).
  9.  A. Ilyanok, “Quantum Supercapacitor”, US Patent No. 7,193,261 B26, Mar. 20, 2007.
  10.  N.H. Pham, O. Shinobu, T. Masaaki, E. Barnes Stewart, and M. Sadamichi, “Electromotive force and huge magnetoresistance in magnetic tunnel junctions”, Nature 458, 489‒493 (2009).
  11.  S. Datta, “Proposal for a “spin capacitor”, Appl. Phys. Lett. 87(1), 013115(1‒3) (2005).
  12.  T. Popławski, I. Bordun, and A. Pidluzhna, “Thermo-, magneto- and photo- dependent electrical properties of hierarchical InSe<β-CD<FeSO4>> supramolecular compound”, Bull. Pol. Acad. Sci. Tech. Sci. 68(43), 361‒366 (2020).
  13.  Y. Wu, H.-R. Fuh, D. Zhang, C.Ó. Coileáin, H. Xu, J. Cho, and H.-C. Wu, “Simultaneous large continuous band gap tunability and photoluminescence enhancement in GaSe nanosheets via elastic strain engineering”, Nano Energy 32, 157‒164 (2017).
  14.  R.M.A. Lies, “III–VI Compounds”, in Preparation and crystal growth material with layered structure, pp 225‒254, ed. R.M.A. Lies, D. Retdel, Publishing Company, Dordrecht-Boston, 1977.
  15.  R.H. Friend and A.D. Yoffe, “Electronic properties of intercalation complexes of the transition metal dichalcogenides”, Adv. Phys. 36(1), 1‒94 (1987).
  16.  I. Grygorchak, F. Ivashchyshyn, P. Stakhira, R.R. Reghu, V. Cherpak, and J.V. Grazulevicius, “Intercalated Nanostructure Consisting of Inorganic Receptor and Organic Ambipolar Semiconductor”, J. Nanoelectron. Optoelectron. 8, 292‒296 (2013).
  17.  T.M. Bishchaniuk, et al., “Electronic Processes and Energy Storage in Inorganic/Organic Nanohybrids”, Mol. Cryst. Liq. Cryst. 589, 132‒140 (2014).
  18.  Z. Stoinov, B. Grafov, B. Savvova-Stoinova, and V. Yelkin, Electrochemical Impedance, Nauka, Moskow, 1991, [In Russian].
  19. Impedance spectroscopy. Theory, experiment and application, eds. E. Barsoukov and J.R. Macdonald, Wiley Interscience, Hoboken, New Jersey, 2005.
  20.  J. Bisquert, H. Randriamahazaka, and G. Garcia-Belmonte, “Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry”, Electrochimica Acta 51, 627‒640 (2005).
  21.  I. Mora-Seró, et al., “Implications of the Negative Capacitance Observed at Forward Bias in Nanocomposite and Polycrystalline Solar Cells”, Nano Letters. 6(4), 640‒650 (2006).
  22.  I.I. Grygorchak, F.O. Ivashchyshyn, M.V. Tokarchuk, N.T. Pokladok, and O.V. Viznovych, “Modification of properties of GaSe  <β-cyclodexterin<FeSO4>> clathrat by synthesis in superposed electric and light-wave fields”, J. Appl. Phys. 121, 185501 (1‒7) (2017).
  23.  S. Luryi, “Quantum capacitance devices”, Appl. Phys. Lett. 52, 501‒503 (1988)
  24.  V.V. Kaminskii and S.M. Solov’ev, “Emf induced by a change in the samarium ion valence as a result of a phase transition in SmS single crystals”, Phys. Solid State 43, 439‒442 (2001).
  25.  V.V. Kaminskii and M.M. Kazanin, “Thermovoltaic effect in thin-film samarium-sulfide-based structures”, Tech. Phys. Lett. 34, 361‒362 (2008).
  26.  I.A. Pronin, B.V. Donkova, D.T. Dimitrov, I.A. Averin, J.A. Pencheva, and V.A. Moshnikov, “Relationship between the photocatalytic and photoluminescence properties of zinc oxide doped with copper and manganese”, Semiconductors 48, 842‒847 (2014).
  27.  L.K. Krasteva, et al., “Synthesis and characterization of nanostructured zinc oxide layers for sensor applications”, Semiconductors 47, 586‒591 (2013).
  28.  V.V. Kaminskii, L.N. Vasil’ev, M.V. Romanova, and S.M. Solov’ev, “The mechanism of the appearance of an electromotive force on heating of SmS single crystals”, Phys. Solid State 43, 1030‒1032 (2001).

Date

08.03.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.136726

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; 2; e136726
×