Details
Title
Multivoltaic GaSe>SmCl3> clathrate as new hybrid functional nanostructureJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
2Authors
Affiliation
Ivashchyshyn, Fedir : Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland ; Ivashchyshyn, Fedir : Lviv Polytechnic National University, Bandera 12, Lviv, 79013, Ukraine ; Pidluzhna, Anna : Lviv Polytechnic National University, Bandera 12, Lviv, 79013, Ukraine ; Calus, Dariusz : Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland ; Hryhorchak, Orest : Ivan Franko Lviv National University, Cyril and Methodius 8, Lviv, 79005, Ukraine ; Chabecki, Piotr : Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland ; Makarchuk, Oleksandr : Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland ; Makarchuk, Oleksandr : Lviv Polytechnic National University, Bandera 12, Lviv, 79013, UkraineKeywords
impedance analysis ; GaSe ; multiferroic ; thermogalvanic effect ; negative capacityDivisions of PAS
Nauki TechniczneCoverage
e136726Bibliography
- M.J. Fiebig, “Revival of the magnetoelectric effect”, Phys. D Appl. Phys. 38, R123-R152 (2005).
- D.I. Khomskii, “Multiferroics: Different ways to combine magnetism and ferroelectricity”, J. Magn. Magn. Mater. 306, 1‒8 (2006).
- W. Eerenstein, N.D. Mathur, and J.F. Scott, “Multiferroic and magnetoelectric materials”, Nature. 442, 759‒765 (2006).
- Y. Tokura, “Materials science. Multiferroics as quantum electromagnets”, Science 312(5779), 1481‒1482 (2006).
- R. Ramesh and N.A. Spaldin, “Multiferroics: progress and prospects in thin films”, Nature Mater. 6(1), 21‒29 (2007).
- S. Cheong and M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity”, Nature Mater. 6(1) 13‒20 (2007).
- A.P. Pyatakov and A.K Zvezdin, “Magnetoelectric and multiferroic media”, Phys.-Usp. 55(6), 557‒581 (2012).
- A.W. Hübler and O. Onyeama, “Digital quantum batteries: Energy and information storage in nanovacuum tube arrays”, Wiley Periodicals Inc. Complexity. 15(5), 48‒5 (2010).
- A. Ilyanok, “Quantum Supercapacitor”, US Patent No. 7,193,261 B26, Mar. 20, 2007.
- N.H. Pham, O. Shinobu, T. Masaaki, E. Barnes Stewart, and M. Sadamichi, “Electromotive force and huge magnetoresistance in magnetic tunnel junctions”, Nature 458, 489‒493 (2009).
- S. Datta, “Proposal for a “spin capacitor”, Appl. Phys. Lett. 87(1), 013115(1‒3) (2005).
- T. Popławski, I. Bordun, and A. Pidluzhna, “Thermo-, magneto- and photo- dependent electrical properties of hierarchical InSe<β-CD<FeSO4>> supramolecular compound”, Bull. Pol. Acad. Sci. Tech. Sci. 68(43), 361‒366 (2020).
- Y. Wu, H.-R. Fuh, D. Zhang, C.Ó. Coileáin, H. Xu, J. Cho, and H.-C. Wu, “Simultaneous large continuous band gap tunability and photoluminescence enhancement in GaSe nanosheets via elastic strain engineering”, Nano Energy 32, 157‒164 (2017).
- R.M.A. Lies, “III–VI Compounds”, in Preparation and crystal growth material with layered structure, pp 225‒254, ed. R.M.A. Lies, D. Retdel, Publishing Company, Dordrecht-Boston, 1977.
- R.H. Friend and A.D. Yoffe, “Electronic properties of intercalation complexes of the transition metal dichalcogenides”, Adv. Phys. 36(1), 1‒94 (1987).
- I. Grygorchak, F. Ivashchyshyn, P. Stakhira, R.R. Reghu, V. Cherpak, and J.V. Grazulevicius, “Intercalated Nanostructure Consisting of Inorganic Receptor and Organic Ambipolar Semiconductor”, J. Nanoelectron. Optoelectron. 8, 292‒296 (2013).
- T.M. Bishchaniuk, et al., “Electronic Processes and Energy Storage in Inorganic/Organic Nanohybrids”, Mol. Cryst. Liq. Cryst. 589, 132‒140 (2014).
- Z. Stoinov, B. Grafov, B. Savvova-Stoinova, and V. Yelkin, Electrochemical Impedance, Nauka, Moskow, 1991, [In Russian].
- Impedance spectroscopy. Theory, experiment and application, eds. E. Barsoukov and J.R. Macdonald, Wiley Interscience, Hoboken, New Jersey, 2005.
- J. Bisquert, H. Randriamahazaka, and G. Garcia-Belmonte, “Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry”, Electrochimica Acta 51, 627‒640 (2005).
- I. Mora-Seró, et al., “Implications of the Negative Capacitance Observed at Forward Bias in Nanocomposite and Polycrystalline Solar Cells”, Nano Letters. 6(4), 640‒650 (2006).
- I.I. Grygorchak, F.O. Ivashchyshyn, M.V. Tokarchuk, N.T. Pokladok, and O.V. Viznovych, “Modification of properties of GaSe <β-cyclodexterin<FeSO4>> clathrat by synthesis in superposed electric and light-wave fields”, J. Appl. Phys. 121, 185501 (1‒7) (2017).
- S. Luryi, “Quantum capacitance devices”, Appl. Phys. Lett. 52, 501‒503 (1988)
- V.V. Kaminskii and S.M. Solov’ev, “Emf induced by a change in the samarium ion valence as a result of a phase transition in SmS single crystals”, Phys. Solid State 43, 439‒442 (2001).
- V.V. Kaminskii and M.M. Kazanin, “Thermovoltaic effect in thin-film samarium-sulfide-based structures”, Tech. Phys. Lett. 34, 361‒362 (2008).
- I.A. Pronin, B.V. Donkova, D.T. Dimitrov, I.A. Averin, J.A. Pencheva, and V.A. Moshnikov, “Relationship between the photocatalytic and photoluminescence properties of zinc oxide doped with copper and manganese”, Semiconductors 48, 842‒847 (2014).
- L.K. Krasteva, et al., “Synthesis and characterization of nanostructured zinc oxide layers for sensor applications”, Semiconductors 47, 586‒591 (2013).
- V.V. Kaminskii, L.N. Vasil’ev, M.V. Romanova, and S.M. Solov’ev, “The mechanism of the appearance of an electromotive force on heating of SmS single crystals”, Phys. Solid State 43, 1030‒1032 (2001).