Details
Title
Mechanics of infinitesimal gyroscopes on helicoid-catenoid deformation family of minimal surfacesJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
2Authors
Affiliation
Kovalchuk, Vasyl : Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland ; Gołubowska, Barbara : Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland ; Mladenov, Ivaïlo M. : Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 21, 1113 Sofia, BulgariaKeywords
action-angle analysis ; mechanics of infinitesimal gyroscopes ; geodesic and geodetic equations of motion ; helicoid-catenoid deformation family of minimal surfaces ; elliptic integrals and elliptic functionsDivisions of PAS
Nauki TechniczneCoverage
e136727Bibliography
- I.M. Mladenov and M.Ts. Hadzhilazova, “Geometry of the anisotropic minimal surfaces”, An. St. Univ. Ovidius Constanta 20, 79–88 (2012).
- J. Zmrzlikar, Minimal Surfaces in Biological Systems, Faculty of Mathematics and Physics, University of Ljubljana, 2011.
- S.N. Krivoshapko and V.N. Ivanov, Encyclopedia of Analytical Surfaces, Springer, New York-London, 2015.
- A. Gray, E. Abbena, and S. Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, Chapman and Hall/CRC, New York, 2006.
- S. Amari and A. Cichocki, “Information geometry of divergence functions”, Bull. Pol. Acad. Sci. Tech. Sci. 58, 183–195 (2010).
- I.S. Gradstein and I.M. Ryzhik, Tables of Integrals, Series, and Products (7th Edition), eds. A. Jeffrey and D. Zwillinger, Academic Press, Oxford, 2007.
- V. Kovalchuk, B. Gołubowska, and I.M. Mladenov, “Mechanics of infinitesimal test bodies on Delaunay surfaces: spheres and cylinders as limits of unduloids and their action-angle analysis”, J. Geom. Symmetry Phys. 53, 55–84, (2019).
- V. Kovalchuk and I.M. Mladenov, “Mechanics of infinitesimal gyroscopes on Mylar balloons and their action-angle analysis”, Math. Meth. Appl. Sci. 43, 3040–3051 (2020).
- J.J. Slawianowski and B. Golubowska, “Bertrand systems on spaces of constant sectional curvature. The action-angle analysis. Classical, quasi-classical and quantum problems”, Geom. Integrability Quantization 16, 110–138 (2015).
- G. De Matteis, L. Martina, C. Naya, and V. Turco, “Helicoids in chiral liquid crystals under external fields”, Phys. Rev. E 100, 05273- (1–12) (2019).
- G. De Matteis, L. Martina, and V. Turco, “Waveguiding by helicoids in confined chiral nematics”, J. Instrum. 15, C05028-(1–11) (2020).
- M. Toda, F. Zhang, and B. Athukorallage, “Elastic surface model for beta-barrels: geometric, computational, and statistical analysis”, Proteins 86, 35–42 (2018).
- J.J. Sławianowski, V. Kovalchuk, B. Gołubowska, A. Martens, and E.E. Rożko, “Dynamical systems with internal degrees of freedom in non-Euclidean spaces”, IFTR Reports, IPPT PAN, 8/2006.