Details

Title

Application of non-contact ultrasonic method in air to study fiber-cement corrugated boards

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

2

Authors

Affiliation

Drelich, Radosław : Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland ; Rosiak, Michał : Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland ; Pakula, Michał : Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland

Keywords

Lamb waves ; cellulose fiber cement boards ; non-contact ultrasonic methods

Divisions of PAS

Nauki Techniczne

Coverage

e136740

Bibliography

  1.  Z. Su, L. Ye, and Y. Lu, “Guided Lamb waves for identification of damage in composite structures: A review”, J. Sound Vibr. 295, 753–780 (2006).
  2.  J.K. Agrahari and S. Kapuria, “Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves”, Ultrasonics 70, 147–157 (2016).
  3.  R. Kędra and M. Rucka, “Preload monitoring in a bolted joint using Lamb wave energy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(6), 1161–1169 (2019).
  4.  S. Vázquez, J. Gosálbez, I. Bosch, A. Carrión, C. Gallardo, and J. Payá, “Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates”, Sensors (Basel) 19(19), 4068 (2019).
  5.  L. Yu, Z. Tian, and C.A.C. Leckey, “Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods”, Ultrasonics 62, 203–212 (2015).
  6.  M. Radzieński, P. Kudela, W. Ostachowicz, P. Bolimowski, R. Kozera, and A. Boczkowska, “Lamb-wave-based method in the evaluation of self-healing efficiency”, Appl. Sci. 10, 2585 (2020).
  7.  K. Imielińska, M. Castaingsc, R. Wojtyrab, J. Harasa, E. Le Clezioc, and B. Hosten, “Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar/epoxy composites”, J. Mat. Process. Techn. 157–158, 513–522 (2004).
  8.  H.B. Kichou, J.A. Chavez, A. Turo, J. Salazar, and M.J. Garcia-Hernandez, “Lamb waves beam deviation due to small inclination of the test structure in air-coupled ultrasonic NDT”, Ultrasonics 44, e1077–e1082 (2006).
  9.  S. Yashiro, J. Takatsubo, and N. Toyama, “An NDT technique for composite structures using visualized Lamb-wave propagation”, Compos. Sci. Technol. 67, 3202–3208 (2007).
  10.  Ł. Ambrozinski, B. Piwakowski, T. Stepinski, and T. Uhl, “Application of air-coupled ultrasonic transducers for damage assessment of composite panels”, 6th European Workshop on Structural Health Monitoring, 2014, pp. 1‒8.
  11.  R. Drelich, T. Gorzelańczyk, M. Pakuła, and K. Schabowicz, “Automated control of cellulose fibre cement boards with a non-contact ultrasound scanner”, Autom. Constr. 57, 55–63 (2015).
  12.  M.S. Harb and F.G. Yuan, “Non-contact ultrasonic technique for Lamb wave characterization in composite plates”, Ultrasonics 64, 162–169 (2016).
  13.  S. Talberg and T.F. Johansen, “Acoustic measurements above a plate carrying Lamb waves”, Proceedings of the 39th Scandinavian Symposium on Physical Acoustics, Geilo, Norway, 2016.
  14.  T. Marhenke, J. Neuenschwander, R. Furrer, J. Twiefel, J. Hasener, P. Niemz, and S.J. Sanabria, “Modeling of delamination detection utilizing air-coupled ultrasound in wood-based composites”, NDT E Int. 99, 1–12 (2018).
  15.  K.J. Vössing, M. Gaal, and E. Niederleithinger, “Air-coupled ferroelectret ultrasonic transducers for nondestructive testing of wood- based materials”, Wood Sci. Technol. 6, 1527–1538 (2018).
  16.  N. Toyama, J. Ye, W. Kokuyama, and S. Yashiro, “Non-contact ultrasonic inspection of impact damage in composite laminates by visualization of lamb wave propagation”, Appl. Sci. 9, 46 (2019).
  17.  A. Römmeler, P. Zolliker, J. Neuenschwander, V. van Gemmeren, M. Weder, and J. Dual,“Air coupled ultrasonic inspection with Lamb waves in plates showing mode conversion”, Ultrasonic 100, 105984 (2020).
  18.  M. Kaczmarek, B. Piwakowski, and R. Drelich, “Noncontact ultrasonic nondestructive techniques: state of the art and their use in civil engineering”, J. Infrastruct. Syst. 23(1), 45–56an (2017).
  19.  B. Yilmaz, A. Asokkumar, E. Jasiuniene, and R. J. Kazys, “Air-coupled, contact, and immersion ultrasonic non-destructive testing: Comparison for bonding quality evaluation”, Appl. Sci. 10, 6757 (2020).
  20.  J. Liu and N.F. Declerq, “Ultrasonic geometrical characterization of periodically corrugated surfaces”, Ultrasonics 53, 853–861 (2013).
  21.  J.D. Achenbach, Wave propagation in elastic solids, North-Holland Publishing Company, Amsterdam, 1973.
  22.  O. Abraham, B. Piwakowski, G. Villain, and O. Durand, “Non-contact, automated surface wave measurements for the mechanical characterization of concrete”, Constr. Build. Mater. 37, 904–915 (2012).
  23.  R. Drelich, B. Piwakowski, and M. Kaczmarek, “Identification of inhomogeneous cover layer by non-contact ultrasonic method – studies for model materials”, Annales du Bâtiment et des Travaux Publics 66(1–3), 47–52 (2014).
  24.  Ł. Amboziński, B. Piwakowski, T. Stepinski, and T. Uhl, “Evaluation of dispersion characteristics of multimodal guided waves using slant stack transform”, NDT E Int. 68, 88–97 (2014).
  25.  W. Ke, M. Castaings, and C. Bacon, “3D finite element simulations of an air-coupled ultrasonic NDT system”, NDT E Int. 42, 524–533 (2009).
  26.  A. Piekarczuk, “Test-supported numerical analysis for evaluation of the load capacity of thin-walled corrugated profiles”, Bull. Pol. Acad. Sci. Tech. Sci. 65(6), 791‒798 (2017).
  27.  M. Cieszko, R. Drelich, and M. Pakuła, “Wave dispersion in randomly layered materials”, Wave Motion 64, 52–67 (2016).

Date

30.03.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.136740

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; 2; e136740
×