Details
Title
Fusion of feature selection methods in gene recognitionJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
3Authors
Affiliation
Gil, Fabian : Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland ; Osowski, Stanislaw : Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland ; Osowski, Stanislaw : Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, PolandKeywords
diagnostic features ; selection methods ; genes ; recognition ; biomarkersDivisions of PAS
Nauki TechniczneCoverage
e136748Bibliography
- I. Guyon and A. Elisseeff, “An introduction to variable and feature selection”, J. Mach. Learn. Res. 3, 1158–1182 (2003).
- I. Guyon, A.J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using SVM”, Mach. Learn. 46, 389‒422 (2003).
- P.N. Tan, M. Steinbach, and V Kumar, Introduction to data mining, Boston, Pearson Education Inc., 2006.
- H. Chen, Y. Zhang, and I. Gutman, “A kernel-based clustering method for gene selection with gene expression data”, J. Biomed. Inf orm. 62, 12‒20 (2016).
- P. Das, A. Roychowdhury, S. Das, S. Roychoudhury, and S. Tripathy, “sigFeature: novel significant feature selection method for classification of gene expression data using support vector machine and t statistic”, Front. Genet. 11, 247 (2020), doi: 10.3389/fgene.2020.00247.
- A. Wiliński and S. Osowski, “Ensemble of data mining methods for gene ranking”, Bull. Pol. Acad. Sci. Tech. Sci. 60, 461‒471 (2012).
- H. Mitsubayashi, S. Aso, T. Nagashima, and Y. Okada, “Accurate and robust gene selection for disease classification using simple statistics, Biomed. Inf orm. 391, 68–71 (2008).
- J. Xu, Y. Wang, K. Xu, and T. Zhang, “Feature genes selection using fuzzy rough uncertainty metric for tumour diagnosis”, Comput. Math. Method Med. 2019, 6705648 (2019), doi: 10.1155/2019/6705648.
- B. Lyu and A. Haque, “Deep learning based tumour type classification using gene expression data”, bioRxiv, p. 364323 (2018), doi: 10.1101/364323.
- F. Yang, “Robust feature selection for microarray data based on multi criterion fusion”, IEEE Trans. Comput. Biol. Bioinf . 8(4), 1080–1092 (2011).
- M. Muszyński and S. Osowski, “Data mining methods for gene selection on the basis of gene expression arrays”, Int. J. .Appl. Math. Comput. Sci. 24(3), 657‒668 (2014).
- T. Latkowski and S. Osowski, “Data mining for feature selection in gene expression autism data”, Expert Syst. Appl. 42(2), 864‒872 (2015).
- Matlab user manual. Natick (USA): MathWorks: (2020).
- P. Sprent, and N.C. Smeeton, Applied Nonparametric Statistical Methods. Boca Raton, Chapman & Hall/CRC, 2007.
- R.O. Duda, P.E. Hart, and P. Stork, Pattern Classif ication and Scene Analysis, New York: Wiley, 2003.
- Exxact. [Online]. https://blog.exxactcorp.com/scikitlearn-vs-mlr-for-machine-learning/
- Tutorialspoint. [Online]. https://www.tutorialspoint.com/weka/weka_feature_selection.htm
- R. Robnik-Sikonja, and I. Kononenko, “Theoretical and empirical analysis of Relief ”, Mach. Learn. 53, 23‒69 (2003).
- W. Yang, K. Wang, and W. Zuo. “Neighborhood Component Feature Selection for High-Dimensional Data”, J. Comput. 7(1), 161‒168 (2012).
- L. Breiman, “Random forests”, Mach. Learn. 45, 5–32 (2001).
- NCBI database. [Online]. http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4431, (2011).
- http://discover1.mc.vanderbilt.edu/discover/public/mcsvm/
- http://sdmc.lit.org.sg/GEDatasets/Datasets.html
- F. Gil and S. Osowski, “Feature selection methods in gene recognition problem”, in Proc. on-line Conf erence Computatational Methods in Electrical Engineering, 2020, pp. 1‒4.