Details
Title
Multi-feature ensemble system in the renal tumour classification taskJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
3Authors
Affiliation
Osowska-Kurczab, Aleksandra Maria : Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland ; Markiewicz, Tomasz : Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland ; Markiewicz, Tomasz : Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland ; Dziekiewicz, Miroslaw : Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland ; Lorent, Malgorzata : Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, PolandKeywords
medical imaging ; renal cell carcinoma ; convolutional neural networks ; textural features ; support vector machine ; computer vision ; deep learningDivisions of PAS
Nauki TechniczneCoverage
e136749Bibliography
- “Kidney cancer statistics”, Cancer Research UK, (2020). [Online]. Available: https://www.cancerresearchuk.org/health-professional/ cancer-statistics/statistics-by-cancer-type/kidney-cancer. [Accessed: 05-Oct-2020].
- L. Zhou et al., “A Deep Learning-Based Radiomics Model for Differentiating Benign and Malignant Renal Tumors”, Translational Oncology 12(2), 292‒300, (2019).
- H. Coy et al., “Deep learning and radiomics: the utility of Google TensorFlowTM Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT”, Abdominal Radiology 44(6), 2009‒2020, (2019).
- S. Tabibu, P.K. Vinod, and C.V. Jawahar, “Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning”, Scientific Reports 9(1), 10509, (2019).
- S. Han, S.I. Hwang, and H.J. Lee, “The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method”, Journal of Digital Imaging 32, 638–643, (2019).
- Q. Chaudry, S.H. Raza, A.N. Young, and M.D.Wang, “Automated renal cell carcinoma subtype classification using morphological, textural and wavelets based features”, Journal of Signal Processing Systems 55(1‒3), 15‒23, (2009).
- B. Kocak et al., “Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation”, European Journal of Radiology, 107, 149‒157, (2018).
- S.P. Raman, Y. Chen, J.L. Schroeder, P. Huang, and E.K. Fishman, “CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology”, Academic Radiology, 12, 1587‒1596, (2014).
- W. Sun, B. Zheng, and W. Qian, “Computer aided lung cancer diagnosis with deep learning algorithms”, Proceedings of the International Society for Optics and Photonics Conference (2016).
- H. Polat and D.M. Homay, “Classification of Pulmonary CT Images by Using Hybrid 3D-Deep Convolutional Neural Network Architecture”, Applied Sciences, 9(5), 940, (2019).
- W. Alakwaa, M. Nassef, and A. Badr, “Lung cancer Detection and Classification with 3D Convolutional Neural Network (3DCNN)”, International Journal of Advanced Computer Science and Applications (IJACSA) 8(8), (2017).
- M.A. Hussain, G. Hamarneh, and R. Garbi, “Renal Cell Carcinoma Staging with Learnable Image Histogram-Based Deep Neural Network”, Lecture Notes in Computer Science, 11861, 533‒540, (2019).
- O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, Medical Image Computing and Computer-Assisted Intervention (MICCAI), 9351, (2015).
- K. Yin et al., “Deep learning segmentation of kidneys with renal cell carcinoma”, Journal of Clinical Oncology 37(15), (2019).
- J. Kurek et al., “Deep learning versus classical neural approach to mammogram recognition”, Bul. Pol. Acad. Sci. Tech. Sci. 66(6), 831‒840, (2018).
- A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz and M. Lorent, “Textural and deep learning methods in recognition of renal cancer types based on CT images”, Proceedings of the International Joint Conference on Neural Networks (IJCNN), (2020).
- A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz, and M. Lorent, “Combining texture analysis and deep learning in renal tumour classification task”, Proceedings of the Computational Problems of Electrical Engineering (CPEE), (2020).
- R.M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification”, IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), (1973).
- A.F. Costa, G. Humpire-Mamani, and A.J.M. Traina, “An Efficient Algorithm for Fractal Analysis of Textures,”, Proceedings of 25th SIBGRAPI Conference on Graphics, Patterns and Images, 39‒46, (2012).
- P. Shanmugavadivu and V. Sivakumar, “Fractal Dimension Based Texture Analysis of Digital Images”, Procedia Engineering, 38, 2981‒2986, (2012).
- M. Unser, “Local Linear Transforms for Texture Analysis”, Proceedings of the 7th IEEE International Conference on Pattern Recognition (ICPR), II, 1206‒1208, (1984).
- M. Unser, “Sum and difference histograms for texture classification”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 118‒125, (1986).
- C. Cortes and V. Vapnik, “Support-vector network”, Machine Learning 20(3), 273‒297, (1995).
- Y. Bengio, “Learning Deep Architectures for AI”, Foundations and Trends in Machine Learning 2 (1), 1–127, (2009).
- Y. Bengio, Y. LeCun, and G. Hinton, “Deep Learning”, Nature 521, 436–444, (2015).
- I. Goodfellow, Y. Bengio, and A. Courville: Deep Learning, MIT Press, 2016.
- A. Krizhevsky, I. Sutskever, and G. Hinton, “Image net classification with deep convolutional neural networks”, Advances in Neural Information Processing Systems 25, 1‒9, (2012).
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 770‒778, (2016).
- C. Szegedy et al., “Going deeper with convolutions”, Proceedings of the 28th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1‒9, (2015).
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision”, Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2818‒2826, (2016).
- C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inceptionv4, Inception-ResNet and the impact of residual connections on learning”, Proceedings of 31st Association for the Advancement of Artificial Intelligence on Artificial Intelligence (AAAI), 1‒12, (2016).
- P.N. Tan, M. Steinbach, and V. Kumar: Introduction to Data Mining, Pearson Education, Boston, 2006.
- H. Moch, A.L. Cubilla, P.A. Humphrey, V.E. Reuter, and T.M. Ulbright, “The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours”, European Urology, 70(1), 93‒105, (2016).
- T. Gudbjartsson et al., “Renal oncocytoma: a clinicopathological analysis of 45 consecutive cases”, BJU International 96(9), 1275‒1279, (2005).