Details
Title
U-Net based frames partitioning and volumetric analysis for kidney detection in tomographic imagesJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
3Authors
Affiliation
Les, Tomasz : Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, PolandKeywords
kidney detection ; medical image processing ; U-Net ; frames partitioning ; volumetric analysisDivisions of PAS
Nauki TechniczneCoverage
e137051Bibliography
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition”, Proc. IEEE 86(11), 2278‒2324 (1998), doi: 10.1109/5.726791.
- F. Isensee, “An attempt at beating the 3D U-Net”, ed. K.H. Maier-Hein, 2019.
- Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation”, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016), 424‒432, Springer International Publishing, 2016.
- C. Li, W. Chen, and Y. Tan, “Render U-Net: A Unique Perspective on Render to Explore Accurate Medical Image Segmentation”, Appl. Sci. 10(18), 6439 (2020), doi: 10.3390/app10186439.
- Z. Fatemeh, S. Nicola, K. Satheesh, and U. Eranga, “Ensemble U‐net‐based method for fully automated detection and segmentation of renal masses on computed tomography images”, Med. Phys. 47(9), 4032‒4044 (2020), doi: 10.1002/mp.14193.
- O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”, ArXiv, abs/1505.04597, 2015.
- M.E.J. Ferlay, F. Lam, M. Colombet, L. and Mery. “Global Cancer Observatory: Cancer Today.” [Online] Available: https://gco.iarc.fr/ today, accessed (accessed).
- P.A. Humphrey, H. Moch, A.L. Cubilla, T. M. Ulbright, and V.E. Reuter, “The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours”, Eur. Urol. 70(1), 106‒119 (2016), doi: 10.1016/j.eururo.2016.02.028.
- D.L. Pham, C. Xu, and J.L. Prince, “Current Methods in Medical Image Segmentation”, Ann. Rev. Biomed. Eng. 2(1), 315‒337 (2000), doi: 10.1146/annurev.bioeng.2.1.315.
- B. Tsagaan, A. Shimizu, H. Kobatake, and K. Miyakawa, “An Automated Segmentation Method of Kidney Using Statistical Information”, in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002, pp. 556‒563, Springer Berlin Heidelberg, 2002.
- J.C. Bezdek, “Objective Function Clustering”, in Pattern Recognition with Fuzzy Objective Function Algorithms , pp. 43‒93, Boston: Springer US, 1981.
- K. Sharma et al., “Automatic Segmentation of Kidneys using Deep Learning for Total Kidney Volume Quantification in Autosomal Dominant Polycystic Kidney Disease”, Sci. Rep. 7(1), 2049 (2017), doi: 10.1038/s41598-017-01779-0.
- P. Jackson, N. Hardcastle, N. Dawe, T. Kron, M.S. Hofman, and R. J. Hicks, “Deep Learning Renal Segmentation for Fully Automated Radiation Dose Estimation in Unsealed Source Therapy”, Front. Oncol. 14(8), 215, (2018), doi: 10.3389/fonc.2018.00215.
- C. Li, W. Chen, and Y. Tan, “Point-Sampling Method Based on 3D U-Net Architecture to Reduce the Influence of False Positive and Solve Boundary Blur Problem in 3D CT Image Segmentation”, Appl. Sci. 10(19), 6838 (2020).
- A. Myronenko and A. Hatamizadeh, “3d kidneys and kidney tumor semantic segmentation using boundary-aware networks”, arXiv preprint arXiv:1909.06684, 2019.
- W. Zhao, D. Jiang, J. P. Queralta, and T. Westerlund, “Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor Segmentation”, arXiv preprint arXiv:2004.08108, 2020.
- W. Zhao, D. Jiang, J. Peña Queralta, and T. Westerlund, “MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net”, Inform. Med. Unlocked 19, 100357 (2020), doi: 10.1016/j.imu.2020.100357.
- Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series”, in The handbook of brain theory and neural networks, pp. 255–258, MIT Press, 1998.
- T. Les, T. Markiewicz, M. Dziekiewicz, and M. Lorent, “Kidney Boundary Detection Algorithm Based on Extended Maxima Transformations for Computed Tomography Diagnosis”, Appl. Sci. 10(21), 7512 (2020), doi: 10.3390/app10217512.
- Z. Swiderska-Chadaj, T. Markiewicz, J. Gallego, G. Bueno, B. Grala, and M. Lorent, “Deep learning for damaged tissue detection and segmentation in Ki-67 brain tumor specimens based on the U-net model”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 849‒856 (2018).
- W. Wieclawek, “3D marker-controlled watershed for kidney segmentation in clinical CT exams”, Biomed. Eng. Online 17(1), 26 (2018), doi: 10.1186/s12938-018-0456-x.
- T. Les, “Patch-based renal CTA image segmentation with U-Net”, in 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE), Poland, 2020, pp. 1‒4, doi: 10.1109/CPEE50798.2020.9238735.