Details
Title
Characterization of oxide layers formed on 10CrMo9-10 steel operated for a long time in the power industryJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
4Affiliation
Gwoździk, Monika : Czestochowa University of Technology, ul. Dabrowskiego 69, 42-201 Czestochowa, Poland ; Ullrich, Christiane : TU Bergakademie Freiberg, Akademiestraße 6, 09599 Freiberg, Germany ; Schimpf, Christian : TU Bergakademie Freiberg, Akademiestraße 6, 09599 Freiberg, Germany ; Rafaja, David : TU Bergakademie Freiberg, Akademiestraße 6, 09599 Freiberg, Germany ; Kulesza, Sławomir : University of Warmia and Mazury in Olsztyn, ul. Michała Oczapowskiego 2, 10-719 Olsztyn, Poland ; Bramowicz, Mirosław : University of Warmia and Mazury in Olsztyn, ul. Michała Oczapowskiego 2, 10-719 Olsztyn, PolandAuthors
Keywords
power industry ; 10CrMo9-10 steel ; oxide layersDivisions of PAS
Nauki TechniczneCoverage
e137730Bibliography
- S. Frangini, A. Masci, and F. Zaza, “Molten salt synthesis of perovskite conversion coatings: A novel approach for corrosion protection of stainless steels in molten carbonate fuel cells,” Corros. Sci. vol. 53, no. 8, pp. 2539–2548, 2011, doi: 10.1016/j.corsci.2011.04.011.
- M. Gwoździk, “Analysis of crystallite size changes in an oxide layer formed on steel used in the power industry”, Acta Phys. Pol. A. vol. 130, no. 4, pp. 935–938, 2016, doi: 10.12693/APhysPolA.130.935.
- M. Gwoździk and Z. Nitkiewicz, “Texturing of magnetite forming during long-term operation of a pipeline of 10CrMo9‒10 steel,” Solid State Phenomena, vol. 203‒204, pp. 121–124, 2013, doi: 10.4028/www.scientific.net/SSP.203-204.121.
- J. Priss, H. Rojacz, I. Klevtsov, A. Dedov, H. Winkelmann, and E. Badisch, “High temperature corrosion of boiler steels in hydrochloric atmosphere under oil shale ashes,” Corros. Sci. vol. 82, pp. 36–44, 2014, doi: 10.1016/j.corsci.2013.12.016.
- J. Lehmusto, P. Yrjas, and L. Hupa, “Pre-oxidation as a means to increase corrosion resistance of commercial superheater steels,” Oxid Met, vol. 91, pp. 311–326, 2019, doi: 10.1007/s11085-019-09898-x.
- X. Montero and M.C. Galetz, “Effect of different vanadate salt composition on oil ash corrosion of boilers,” Oxid Met, vol. 89, pp. 395–414, 2018, doi: 10.1007/s11085-017-9795-4.
- J. Lehmusto, D. Lindberg, P. Yrjas, and L. Hupa, “The effect of temperature on the formation of oxide scales regarding commercial superheater steels. Oxid Met, vol. 89, pp. 251–278, 2018, doi: 10.1007/s11085-017-9785-6.
- M. Gwoździk and Z. Nitkiewicz, “Studies on the adhesion of oxide layer formed on X10CrMoVNb9‒1 steel,” Arch. Civ. Mech. Eng., vol. 14, pp. 335–341, 2014, doi: 10.1016/j.acme.2013.10.005.
- P. Gawron and S. Danisz, “Dostosowanie zakresu badań diagnostycznych wybranych elementów kotłów pracujących w warunkach współspalania biomasy,” Energetyka, vol. 702, pp. 843–853, 2012 [in Polish].
- F. Klepacki and D. Wywrot, “Trwałość wężownicprzegrzewaczy wtórnych w warunkach niskoemisyjnego spalania,” 12th Informative and Training Symposium: Maintenance of Thermo-Mechanical Power Equipment. Upgrading power equipment to extend its operating period beyond 300 000 hours. Wisła, Poland 2010, pp. 29–35 [in Polish].
- J. Cheng, Y.P. Wu, L.Y. Chen, S. Hong, L. Qiao, and Z. Wei, “Hot corrosion behavior and mechanism of highvelocity arc-sprayed Ni-Cr alloy coatings,” J. Therm. Spray Technol., vol. 28, no. 6, pp. 1263–1274, 2019, doi: 10.1007/s11666-019-00890-0.
- A.K. Pramanick, G. Das, and S.K. Das, “Ghosh Failure investigation of super heater tubes of coalfired power plant,” Case Stud. Eng. Fail. Anal., vol. 9, pp. 17–26, 2017, doi: 10.1016/j.csefa.2017.06.001.
- M. Gwoździk, S. Kulesza, M. Bramowicz, “Application of the fractal geometry methods for analysis of oxide layer”. 26th International Conference on Metallurgy and Materials (METAL 2017), Brno, Czech Republic, 2017, pp. 789- 794.
- P. Monivarman, V.A. Nagarajan, and F.M. Raj, “Mechanical and morphological characterization of discarded fishnet/glass fiber reinforced polyester composite,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1385–1391, 2020, doi: 10.24425/bpasts.2020.134646.
- J. Iwaszko, “Laser surface remelting of powder metallurgy high-speed steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1425–1432, 2020, doi: 10.24425/bpasts.2020.135385.
- C. Bhargava, J. Aggarwal, and P.K. Sharma, “Residual life estimation of fabricated humidity sensors using different artificial intelligence techniques,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 147–154, 2019, doi: 10.24425/bpas.2019.127344.
- M. Gwoździk, M. Motylenko, and D. Rafaja, “Microstructure changes responsible for the degradation of the 10CrMo9‒10 and 13CrMo4‒5 steels during long-term operation,” Mater. Res. Express, vol. 7, no. 1, p. 016515, 2020, doi: 10.1088/2053-1591/ab5fc8.
- C. Hao, F.M. Deng, Z.H. Guo, X. Bo, S. Wang, and X. Zhao, “Fractal dimension of decobalt surface on PDC with different acid corrosion reagents at room temperature,” Diam. Relat. Mat., vol. 105, p. 107699, 2020, doi: 10.1016/j.diamond.2020.107699.
- F.M. Mwema, E.T. Akinlabi, and O.P. Oladijo, “Effect of substrate type on the fractal characteristics of AFM images of sputtered aluminium thin films,” Mater. Sci.-Medzg., vol. 26, pp. 49–57, 2020, doi: 10.5755/j01.ms.26.1.22769.
- H. Aminirastabi, H. Xue, V.V. Miti´c, G. Lazovi´c, G. Ji, and D. Peng, “Novel fractal analysis of nanograin growth in BaTiO3 thin film,” Mater Chem Phys, vol. 239, p. 122261, 2020, doi: 10.1016/j.matchemphys.2019.122261.
- W.P. Dong, P.J. Sullivan, and K.J. Stout, “Comprehensive study of parameters for characterizing 3-dimensional surface-topography. 4. Parameters for characterizing spatial and hybrid properties,” Wear, vol. 178, no. 1–2, pp. 45–60, 1994, doi: 10.1016/0043-1648(94)90128- 7.
- T.R. Thomas, B.-G. Rosén, and N. Amini, “Fractal characterisation of the anisotropy of rough surfaces,” Wear, vol. 232, no. 1, pp. 41–50, 1999, doi: 10.1016/S0043-1648(99)00128-3.
- R.X. Fischer et al., “A new mineral from the Bellerberg, Eifel, Germany, intermediate between mullite and sillimanite,” Am. Miner., vol. 100, pp. 1493–1501, 2015, doi: 10.2138/am-2015-4966.
- Z. Liang, M. Yu, and Q. Zhao, “Investigation of fireside corrosion of austenitic heat-resistant steel 10Cr18Ni9Cu3NbN in ultra-supercritical power plants,” Eng. Fail. Anal., vol. 100, pp. 180–191, 2019, doi: 10.1016/j.engfailanal.2019.02.048.
- M.F. Ashby and D.R.H. Jones, Engineering Materials 1 An Introduction to Properties, Applications and Design, Elsevier, 2012.
- J. Fernández, F. González, C. Pesquera, A. Neves Junior, M Mendes Viana and J. Dweck, “Qualitative and quantitative characterization of a coal power plant waste by TG/DSC/MS, XRF and XRD,” J. Therm. Anal. Calorim., vol. 125, no. 2, pp. 703–710, 2016, doi: 10.1007/ s10973-016-5270-8.
- P. Viklund, A. Hjörnhede, P. Henderson, A. Stålenheim, and R. Pettersson, “Corrosion of superheater materials in a waste-to-energy plant,” Fuel Process. Technol., vol. 105, pp. 106–112, 2013, doi: 10.1016/j.fuproc.2011.06.017.
- Y. Wang, J. Jin, D. Liu, H. Yang, and X. Kou, “Understanding ash deposition for Zhundong coal combustion in 330 MW utility boiler: focusing on surface temperature effects,” Fuel, vol. 216, pp. 697–706, 2018, doi: 10.1016/j.fuel.2017.08.112.
- Y. Xie, W. Xie, W-P. Pan, A. Riga, and K. Anderson, “A study of ash deposits on the heat exchange tubes using SDT/MS and XRD techniques,” Thermochim. Acta, vol. 324, pp. 123–133, 1998, doi: 10.1016/S0040-6031(98)00529-2.
- P.J. Ennis and W.J. Quadakkers, “Mechanisms of steam oxidation in high strength martensitic steels,” Int. J. Pressure Vessels Pip., vol. 84, pp. 75–81, 2007, doi: 10.1016/j.ijpvp.2006.09.007.
- R. Abang, A. Findeisen, and H.J. Krautz, “Corrosion behaviour of selected Power plant materials under oxyfuel combustion conditions,” Górnictwo i Geoinżynieria, vol. 35, no. 3/1, pp. 23–42, 2011.
- T. Aleksandrov Fabijanic’, D. Ćorić, M. Šnajdar Musa, and M. Sakoman, “Vickers Indentation Fracture Toughness of Near-Nano and Nanostructured WC-Co Cemented Carbides,” Metals, vol. 7, 143, 2017, doi: 10.3390/met7040143.
- M. Gwoździk and Z. Nitkiewicz, “Scratch resistance characteristic of oxide layer formed on P91 steel,” Inżynieria Materiałowa, vol. 182, no. 4, pp. 435–438, 2011.