Details

Title

Research on hybrid modified pathfinder algorithm for optimal reactive power dispatch

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

4

Affiliation

Suresh, V. : Department of Electrical and Electronics Engineering, Government College of Engineering, Salem-11, India ; Senthil Kumar, S. : Department of Electrical and Electronics Engineering, Government College of Engineering, Salem-11, India

Authors

Keywords

optimal reactive power dispatch (ORPD) ; real power losses ; pathfinder algorithm (PFA) ; modified pathfinder algorithm (mPFA) ; hybrid pathfinder algorithm (HPFA)

Divisions of PAS

Nauki Techniczne

Coverage

e137733

Bibliography

  1.  M. Gwozd and L. Ciepliński, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter-part 1”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 401–408, 2020, doi: 10.24425/BPASTS.2020.133383.
  2.  M.N. Acosta, D. Topic, and M.A. Andrade, “Optimal Microgrid–Interactive Reactive Power Management for Day–Ahead Operation”, Energies, vol. 14, no. 5, p. 1275, 2021, doi: 10.3390/en14051275.
  3.  A.M. Tudose, I.I. Picioroaga, D.O. Sidea, and Co. Bulac, “Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm”, Energies, vol. 14, no. 5, p. 1222, 2021, doi: 10.3390/en14051222.
  4.  E. Canelas, T. Pinto-Varela, and B. Sawik, “Electricity Portfolio Optimization for Large Consumers: Iberian Electricity Market Case Study”, Energies, vol. 13, no. 9, p. 2249, 2020, doi: 10.3390/en13092249.
  5.  V. Suresh and S.S. Kumar, “Optimal reactive power dispatch for minimization of real power loss using SBDE and DE-strategy algorithm”, J. Ambient Intell. Hum. Comput., 2020, doi: 10.1007/s12652-020-02673-w.
  6.  H. Yapici and N. Cetinkaya, “A new meta-heuristic optimizer: pathfinder algorithm”, Appl. Soft Comput., vol. 78, pp. 545–568, 2019, doi: 10.1016/j.asoc.2019.03.012.
  7.  R. Storn and K. Price, “Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces,” J. Global Optim., vol. 11, pp. 341– 359, 1997, doi: 10.1023/A:1008202821328.
  8.  R.P. Singha and S.P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers”, Appl. Soft Comput., vol. 29, pp. 298–309, 2015, doi: 10.1016/j.asoc.2015.01.006.
  9.  M. Ghasemi et. al, “A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables,” Appl. Soft Comput., vol. 22, pp. 126–140, 2014, doi: 10.1016/j.asoc.2014.05.006.
  10.  M. Ghasemi and M. Ghanbarian, “Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study”, Inf. Sci., vol. 278, pp. 231–249, 2014, doi: 10.1016/j.ins.2014.03.050.
  11.  B. Mandal and P.K. Roy, “Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization”, Electr. Power Energy Syst., vol. 53, pp. 123–134, 2013, doi: 10.1016/j.ijepes.2013.04.011.
  12.  S Mouassa and A. Salhi, “Ant lion optimizer for solving optimal reactive power dispatch problem in power systems”, Eng. Sci. Technol., vol. 20, pp 885–895, 2017, doi: 10.1016/j.jestch.2017.03.006.
  13.  S. Mugemanyi et. al., “Optimal Reactive Power Dispatch Using Chaotic Bat Algorithm”, IEEE Access, vol. 8, pp. 65830–65867, 2020, doi: 10.1109/ACCESS.2020.2982988.
  14.  W.M. Villa-Acevedo and J.M. Lopez-Lezama, “A novel constraint handling approach for the optimal reactive power dispatch problem”, Energies, vol. 11, p. 2352, 2018, doi: 10.3390/en11092352.
  15.  R. Zimmerman, C.E. Murillo-Sanchez, and D. Gan, “MATPOWER 6.0, power systems engineering research center (PSERC)”, 2005, [Online]. Available: https://matpower.org/docs/MATPOWER-manual-6.0.pdf.

Date

27.06.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.137733
×