Details

Title

Performance Investigation of High-Speed Train OFDM Systems under the Geometry-Based Channel Model

Journal title

International Journal of Electronics and Telecommunications

Yearbook

2021

Volume

vol. 67

Issue

No 3

Affiliation

Ha, Do Viet : Faculty of Electrical and Electronic Engineering, University of Transport and Communications (UTC), Hanoi, Vietnam ; Huong, Trinh Thi : Faculty of Electrical and Electronic Engineering, University of Transport and Communications (UTC), Hanoi, Vietnam ; Hai, Nguyen Thanh : Faculty of Electrical and Electronic Engineering, University of Transport and Communications (UTC), Hanoi, Vietnam

Authors

Keywords

High-speed train systems ; geometry-based channel models ; OFDM systems ; SINR ; capacity

Divisions of PAS

Nauki Techniczne

Coverage

451-457

Publisher

Polish Academy of Sciences Committee of Electronics and Telecommunications

Bibliography

[1] V. Vahidi and E. Saberinia, “OFDM high speed train communication systems in 5G cellular networks,” in 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2018, pp. 1–6.
[2] Y. Fu, C. Wang, A. Ghazal, e. M. Aggoune, and M. M. Alwakeel, “Performance investigation of spatial modulation systems under nonstationary wideband high-speed train channel models,” IEEE Transactions on Wireless Communications, vol. 15, no. 9, pp. 6163–6174, 2016.
[3] V. Vahidi and E. Saberinia, “Channel estimation for wideband doubly selective UAS channels.” Miami, FL, USA: IEEE, 2017, pp. 1175– 1180.
[4] V. Vahidi, A. P. Yazdanpanah, E. Saberinia, and E. E. Regentova, “Channel estimation, equalisation, and evaluation for high-mobility airborne hyperspectral data transmission,” IET Communications, vol. 10, pp. 2656–2662, 2016.
[5] A. Sanz-G´omara, J. A. Mar´ın-Garc´ıa, and J. I. Alonso, “Performance evaluation of MIMO architectures with moving relays in high-speed railways,” in 2018 48th European Microwave Conference (EuMC), 2018, pp. 716–719.
[6] M. N., R. M.I., K. S., and P. R., OFDM: Principles and Challenges. In: Tarokh V. (eds) New Directions in Wireless Communications Research. Springer, Boston, MA, 2009.
[7] J. Rodriguez-Pineiro, P. Suarez-Casal, M. Lerch, S. Caban, J. A. Garcia- Naya, L. Castedo, and M. Rupp, “LTE downlink performance in high speed trains.” Glasgow: IEEE, 2015, pp. 1–5.
[8] Zhichao Sheng, Yong Fang, and Chen Wang, “A BEM method of channel estimation for OFDM systems in high-speed train environment,” in 2013 International Workshop on High Mobility Wireless Communications (HMWC), 2013, pp. 6–9.
[9] B. Gong, L. Gui, Q. Qin, and X. Ren, “Compressive sensing-based detector design for SM-OFDM massive MIMO high speed train systems,” IEEE Transactions on Broadcasting, vol. 63, no. 4, pp. 714–726, 2017.
[10] Z. Sheng, H. D. Tuan, and Y. Fang, “Power allocation for OFDM system in a high-speed train environment,” in 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015, pp. 650–655.
[11] X. Ren, M. Tao, and W. Chen, “Compressed channel estimation with position-based ICI elimination for high-mobility SIMO-OFDM systems,” IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6204–6216, 2016.
[12] Y. Xin, Z. Liang, Y. Bai, C. Zhai, and W. Li, “Capacity enhancement using cooperative distributed antenna system in downlink high-speed train environments,” in 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), 2019, pp. 1–5.
[13] I. Zakia, “Capacity of HAP-MIMO channels for high-speed train communications,” in 2017 3rd International Conference on Wireless and Telematics (ICWT), 2017, pp. 26–30.
[14] N. Lin, X. Huang, and X. Ma, “Analysis of the uplink capacity in the high-speed train wireless communication with full-duplex mobile relay,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5.
[15] M. K. Bhatt, B. S. Sedani, K. R. Parmar, and M. P. Shah, “Ergodic UL/DL capacity analysis of co-located and distributed antenna configuration for high speed train with massive MIMO system,” in 2017 International Conference on Inventive Computing and Informatics (ICICI), 2017, pp. 458–461.
[16] T. Zhou, C. Tao, L. Liu, J. Qiu, and R. Sun, “High-speed railway channel measurements and characterizations: a review,” Journal of Modern Transportation, vol. 20, no. 4, pp. 199–205, 2012. [Online]. Available: https://doi.org/10.1007/BF03325799
[17] F. Kaltenberger, A. Byiringiro, G. Arvanitakis, R. Ghaddab, D. Nussbaum, R. Knopp, M. Bernineau, Y. Cocheril, H. Philippe, and E. Simon, “Broadband wireless channel measurements for high speed trains,” in 2015 IEEE International Conference on Communications (ICC), 2015, pp. 2620–2625.
[18] Y. Bi, J. Zhang, Q. Zhu, W. Zhang, L. Tian, and P. Zhang, “A novel non-stationary high-speed train (HST) channel modeling and simulation method,” IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 82–92, 2019.
[19] A. Ghazal, C. Wang, H. Haas, M. Beach, X. Lu, D. Yuan, and X. Ge, “A non-stationary MIMO channel model for high-speed train communication systems,” in 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), 2012, pp. 1–5.
[20] A. Ghazal, C. Wang, B. Ai, D. Yuan, and H. Haas, “A nonstationary wideband MIMO channel model for high-mobility intelligent transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 885–897, 2015.
[21] L. Liu, C. Tao, J. Qiu, H. Chen, L. Yu, W. Dong, and Y. Yuan, “Position-based modeling for wireless channel on high-speed railway under a viaduct at 2.35 GHz,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 4, pp. 834–845, 2012.
[22] Y. M. Aval, S. K. Wilson, and M. Stojanovic, “On the achievable rate of a class of acoustic channels and practical power allocation strategies for OFDM systems,” IEEE Journal of Oceanic Engineering, vol. 40, no. 4, pp. 785–795, 2015.
[23] “Guidelines for evaluation of radio interface technologies for ITU,” Geneva, Switzerland, Tech. Rep. Tech. Rep. ITU-R M.2135-1, 2009.

Date

2021.12.05

Type

Article

Identifier

DOI: 10.24425/ijet.2021.137833
×