Details

Title

Experimental Investigations to Study the Effectiveness of Cepstral Features to Detect Surface Fatigue Wear Development in a FZG Spur Geared System Subjected to Accelerated Tests

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 3

Authors

Affiliation

Amarnath, Muniyappa : Tribology and Machine Dynamics Laboratory, Department of Mechanical Engineering, Indian Institute of Information Technology Design and Manufacturing, Jabalpur,Jabalpur 482001, India ; Praveen Krishna, I.R. : Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram – 695547, India ; Krishnamurthy, Ramalingam : Department of Mechanical Engineering, Indian Institute of Technology, Madras 600025, Tamilnadu, India

Keywords

spur gear ; cepstrum ; stiffness

Divisions of PAS

Nauki Techniczne

Coverage

479-489

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Bibliography

1. Amarnath M., Chandramohan S., Seetharaman S. (2012), Experimental investigations of surface wear assessment of spur gear teeth, Journal of Vibration and Control, 18(7): 1009–1024, doi: 10.1177/1077546311399947.
2. Amarnath M., Lee S.K. (2015), Assessment of surface contact fatigue failure in a spur geared system based on the tribological and vibration parameter analysis, Measurement, 76: 32–44, doi: 10.1016/ j.measurement.2015.08.020.
3. Amarnath M., Sujatha C., Swarnamani S. (2009), Experimental studies on the effects of reduction in gear tooth stiffness and lubricant film thickness in a spur geared system, Tribology International, 42(2): 340–352, doi: 10.1016/j.triboint.2008.07.008.
4. Dalpiaz G., Rivola A., Rubini R. (2000), Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears, Mechanical Systems and Signal Processing, 14(3): 387–412, doi: 10.1006/mssp.1999.1294.
5. El Badaoui M., Antoni J., Guillet F., Daniere J., Velex P. (2001), Use of the moving cepstrum integral to detect and localise tooth spalls in gears, Mechanical Systems and Signal Processing, 15(5): 873–885, doi: 10.1006/mssp.2001.1413.
6. Fakhfakh T., Chaari F., Haddar M. (2005), Numerical and experimental analysis of a gear system with teeth defects, The International Journal of Advanced Manufacturing Technology, 25(5–6): 542–550, doi: 10.1007/s00170-003-1830-8.
7. Fernandes P.J.L. (1996), Tooth bending fatigue failures in gears, Engineering Failure Analysis, 3(3): 219– 225, doi: 10.1016/1350-6307(96)00008-8.
8. Fernandes P.J.L., McDuling C. (1997), Surface contact fatigue failures in gears, Engineering Failure Analysis, 4(2): 99–107, doi: 10.1016/S1350-6307(97)00006-X.
9. Jacobson B. (2003), The Stribeck memorial lecture, Tribology International, 36(11): 781–789, doi: 10.1016/S0301-679X(03)00094-X.
10. Lee S.K., Amarnath M. (2016), Experimental investigations to establish correlation between stribeck curve, specific film thickness and statistical parameters of vibration and sound signals in a spur gear system, Journal of Vibration and Control, 22(6): 1667–1681, doi: 10.1177/1077546314544164.
11. Liang B., Iwnicki S.D., Zhao Y. (2013), Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis, Mechanical Systems and Signal Processing, 39(1–2): 342–360, doi: 10.1016/j.ymssp.2013.02.016.
12. Łazarz B., Wojnar G., Czech P. (2011), Early fault detection of toothed gear in exploitation conditions, Maintenance and Reliability, 2011(1): 68–77.
13. Łazarz B., Wojnar G., Figlus T. (2007), Comparison of the efficiency of selected vibration measures used in the diagnosis of complex cases of tooth gear damage, Diagnostyka, 44: 19–24.
14. Madej H., Łazarz B., Wojnar G. (2005), Geartooth pitting detection through use of the wavelet transform. Tribosysteme in der Fahrzeugtechnik, Symposium 2005 der Osterreichischen Tribologischen Gesellschaft, Wien, 10 November 2005, pp. 241–248.
15. McFadden P.D. (1986), Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration, Journal of Vibration, Acoustics, Stress, and Reliability in Design, 108(2): 165–170, doi: 10.1115/1.3269317.
16. Ozturk H., Yesilyurt I., Sabuncu M. (2010), Detection and advancement monitoring of distributed pitting failure in gears, Journal of Nondestructive Evaluation, 29(2): 63–73, doi: 10.1007/s10921-010-0066-4.
17. Park C.S., Choi Y.C., Kim Y.H. (2013), Early fault detection in automotive ball bearings using the minimum variance cepstrum, Mechanical Systems and Signal Processing, 38(2): 534–548, doi: 10.1016/ j.ymssp.2013.02.017.
18. Randall R.B. (1982), A new method of modeling gear faults, Journal of Mechanical Design, 104(2): 259–267, doi: 10.1115/1.3256334.
19. Sung C.K., Tai H.M., Chen C.W. (2000), Locating defects of a gear system by the technique of wavelet transform, Mechanism and Machine Theory, 35(8): 1169–1182, doi: 10.1016/S0094-114X(99)00045-2.
20. Wojnar G., Łazarz B. (2007), Averaging of the vibration signal with the synchronizing impulse location correction in tooth gear diagnostics, Diagnostyka, 44: 19–24.
21. Yesilyurt I., Gu F., Ball A.D. (2003), Gear tooth stiffness reduction measurement using modal analysis and its use in wear fault severity assessment of spur gears, NDT & E International, 36(5): 357–372, doi: 10.1016/S0963-8695(03)00011-2.
22. Ziaran S., Darula R. (2013), Determination of the state of wear of high contact ratio gear sets by means of spectrum and cepstrum analysis, Journal of Vibration and Acoustics, 135(2): 021008, doi: 10.1115/1.4023208.

Date

2021.09.21

Type

Article

Identifier

DOI: 10.24425/aoa.2021.138140
×