Details

Title

Acoustic Attenuation Performance Analysis and Optimisation of Expansion Chamber Coupled Micro-perforated Cylindrical Panel Using Response Surface Method

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 3

Authors

Affiliation

Alisah, Mohamad Izudin : The Vibration Lab, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia,14300 Nibong Tebal, Pulau Pinang, Malaysia ; Ooi, Lu-Ean : The Vibration Lab, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia,14300 Nibong Tebal, Pulau Pinang, Malaysia ; Ripin, Zaidi Mohd : The Vibration Lab, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia,14300 Nibong Tebal, Pulau Pinang, Malaysia ; Yahaya, Ahmad Fadzli : Dyson Manufacturing, 81400 Senai, Johor, Malaysia ; Ho, Kelvin : Dyson Manufacturing, 81400 Senai, Johor, Malaysia

Keywords

micro-perforated cylindrical panel ; transmission loss ; boundary element method ; response surface method

Divisions of PAS

Nauki Techniczne

Coverage

507-517

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Bibliography

1. Andersen K.S. (2008), Analyzing muffler performance using the transfer matrix method, Comsol Conference, https://www.comsol.com/paper/analyzing-muffler-per formance-using-the-transfer-matrix-method-5079.
2. Aziz M.S.A., Abdullah M.Z., Khor C.Y., Azid I.A. (2015), Optimization of pin through hole connector in thermal fluid–structure interaction analysis of wave soldering process using response surface methodology, Simulation Modelling Practice and Theory, 57: 45–57, doi: 10.1016/j.simpat.2015.06.001.
3. Citarella R., Landi M. (2011), Acoustic analysis of an exhaust manifold by Indirect Boundary Element Method, The Open Mechanical Engineering Journal, 5: 138–151, doi: 10.2174/1874155X01105010138.
4. Delany M.E., Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3(2): 105–116, doi: 10.1016/0003-682X(70)90031-9.
5. Fu J., Chen W., Tang Y., Yuan W., Li G., Li Y. (2015), Modification of exhaust muffler of a diesel engine based on finite element method acoustic analysis, Advances in Mechanical Engineering, 7(4): 1-11, doi: 10.1177/1687814015575954.
6. Gaeta R.J., Ahuja K.K. (2016), Effect of orifice shape on acoustic impedance, International Journal of Aeroacoustics, 15(4–5): 474–495, doi: 10.1177/1475 472X16642133.
7. Ganguli R. (2002), Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods, Journal of Sound and Vibration, 258(2): 327–344, doi: 10.1006/jsvi.2002.5179.
8. Ishak M.H.H., Ismail F., Aziz M.S.A., Abdullah M.Z., Abas A. (2019), Optimization of 3D IC stacking chip on molded encapsulation process: a response surface methodology approach, The International Journal of Advanced Manufacturing Technology, 103(1–4): 1139– 1153, doi: 10.1007/s00170-019-03525-4.
9. Ji Z.L., Selamet A. (2000), Boundary element analysis of three-pass perforated duct mufflers, Noise Control Engineering Journal, 48(5): 151–156, doi: 10.3397/1.2827962.
10. Kallias A.N., Imran Rafiq M. (2013), Performance assessment of corroding RC beams using response surface methodology, Engineering Structures, 49: 671– 685, doi: 10.1016/j.engstruct.2012.11.015.
11. Leong W.C., Abdullah M.Z., Khor C.Y. (2013), Optimization of flexible printed circuit board electronics in the flow environment using response surface methodology, Microelectronics Reliability, 53(12): 1996–2004, doi: 10.1016/j.microrel.2013.06.008.
12. Li Z., Liang X. (2007), Vibro-acoustic analysis and optimization of damping structure with Response Surface Method, Materials & Design, 28(7): 1999–2007, doi: 10.1016/j.matdes.2006.07.006.
13. Liu Z., Zhan J., Fard M., Davy J.L. (2017), Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel, Applied Acoustics, 121: 25–32, doi: 10.1016/j.apacoust.2017.01.032.
14. Lu C., Chen W., Liu Z., Du S., Zhu Y. (2019), Pilot study on compact wideband micro-perforated muffler with a serial-parallel coupling mode, Applied Acoustics, 148: 141–150, doi: 10.1016/j.apacoust.2018.12.001.
15. Maa D.Y. (1975), Theory and design of microperforated panel sound-absorbing constructions, Scientia Sinica, 18(1): 55–71, doi: 10.1360/ya1975-18-1-55.
16. Munjal M.L. (1987), Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, John Wiley & Sons.
17. Na Y., Lancaster J., Casali J., Cho G. (2007), Sound absorption coefficients of micro-fiber fabrics by reverberation room method, Textile Research Journal, 77(5): 330–335, doi: 10.1177/0040517507078743.
18. Qian Y.J., Kong D.Y., Liu S.M., Sun S.M., Zhao Z. (2013), Investigation on micro-perforated panel absorber with ultra-micro perforations, Applied Acoustics, 74(7): 931–935, doi: 10.1016/j.apacoust.2013.01.009.
19. Qin X., Wang Y., Lu C., Huang S., Zheng H., Shen C. (2016), Structural acoustics analysis and optimization of an enclosed box-damped structure based on response surface methodology, Materials & Design, 103: 236–243, doi: 10.1016/j.matdes.2016.04.063.
20. C S.W. et al. (2019), Improvement of the sound absorption of flexible micro-perforated panels by local resonances, Mechanical Systems and Signal Processing, 117: 138–156, doi: 10.1016/j.ymssp.2018.07.046.
21. Selamet A., Ji Z.L. (1999), Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet, Journal of Sound and Vibration, 223(2): 197–212, doi: 10.1006/jsvi.1998.2138.
22. Selamet A., Ji Z.L., Radavich P.M. (1998), Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: II. Comparison with experimental and computational studies, Journal of Sound and Vibration, 213(4): 619–641, doi: 10.1006/jsvi.1998.1515.
23. Tan W.-H., Ripin Z.M. (2013), Analysis of exhaust muffler with micro-perforated panel, Journal of Vibroengineering, 15(2): 558–573.
24. Tan W.-H., Ripin Z.M. (2016), Optimization of double-layered micro-perforated panels with vibroacoustic effect, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(3): 745–760, doi: 10.1007/s40430-014-0274-4.
25. Vasile O. (2010), Transmission loss assessment for a muffler by boundary element method approach, Analele Universitaµii “Eftimie Murgu”, 17(1): 233–242, http://anale-ing.uem.ro/2010/26_C.pdf.
26. Wang Y., Qin X., Huang S., Lu L., Zhang Q., Feng J. (2017), Structural-borne acoustics analysis and multi-objective optimization by using panel acoustic participation and response surface methodology, Applied Acoustics, 116: 139–151, doi: 10.1016/ j.apacoust.2016.09.013.
27. Wu M.Q. (1997), Micro-perforated panels for duct silencing, Noise Control Engineering Journal, 45(2): 69– 77.
28. Yuksel E., Kamci G., Basdogan I. (2012), Vibroacoustic design optimization study to improve the sound pressure level inside the passenger cabin, Journal of Vibration and Acoustics, 134(6): 061017-1–061017- 9, doi: 10.1115/1.4007678.
29. Zhenlin J., Qiang M., Zhihua Z. (1994), Application of the boundary element method to predicting acoustic performance of expansion chamber mufflers with mean flow, Journal of Sound and Vibration, 173(1): 57–71, doi: 10.1006/jsvi.1994.1217.

Date

2021.09.21

Type

Article

Identifier

DOI: 10.24425/aoa.2021.138143
×