Details
Title
Indoor Sound Pressure Level From Service Equipment in Buildings: Influence of Testing Methods on Measurement ResultsJournal title
Archives of AcousticsYearbook
2021Volume
vol. 46Issue
No 3Authors
Affiliation
Nowicka, Elżbieta : Building Research Institute, Warsaw, Poland ; Szewczak, Ewa : Building Research Institute, Warsaw, PolandKeywords
test methods ; compatibility ; sound pressure levelDivisions of PAS
Nauki TechniczneCoverage
547-559Publisher
Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on AcousticsBibliography
1. Batko W.M., Stepien B. (2014), Type a standard uncertainty of long-term noise indicators, Archives of Acoustics, 39(1): 25–36, doi: 10.2478/aoa-2014-0004.2. Berardi U. (2012), A comparison of measurement standard methods for the sound insulation of building façades, Building Acoustics, 19: 267–282, doi: 10.1260/1351-010X.19.4.267.
3. Czichos H., Saito T., Smith L. (2011), Springer Handbook of Metrology and Testing, Springer Berlin– Heidelberg, doi: 10.1007/978-3-642-16641-9.
4. Daszykowski M., Kaczmarek K., Vander Heyden Y., Walczak B. (2007), Robust statistics in data analysis – A review: basic concepts, Chemometrics and Intelligent Laboratory Systems, 85: 203–219, doi: 10.1016/J.CHEMOLAB.2006.06.016.
5. Di Bella A., Pontarollo C.M., Granzotto N., Remigi F. (2013), Interlaboratory test for field evaluation of noise from equipment in residential buildings, [in:] AIA-DAGA 2013 Merano, Merano, pp. 1880–1883.
6. EA-4/16 G:2003 (2003), EA guidelines on the expression of uncertainty in quantitative testing, EA, https://european-accreditation.org/publications/ea-4- 16-g/ (retrieved 18.01.2021).
7. Flores M., Fernández-Casal R., Naya S., Tarrío- Saavedra J., Bossano R. (2018), ILS: An R package for statistical analysis in interlaboratory studies, Chemometrics and Intelligent Laboratory Systems, 181: 11–20, doi: 10.1016/j.chemolab.2018.07.013.
8. ISO-10052 (2004), Acoustics – Field measurements of airborne and impact sound insulation and of service equipment sound – Survey method.
9. ISO-16032 (2004), Acoustics – Measurement of sound pressure level from service equipment in buildings – Engineering method.
10. ISO 13528 (2015), Statistical methods for use in proficiency testing by interlaboratory comparison.
11. ISO 5725-2 (1994), Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method.
12. Jagan K., Forbes A.B. (2019), Assessing interlaboratory comparison data adjustment procedures, International Journal of Metrology and Quality Engineering, 10: 1–8, doi: 10.1051/ijmqe/2019003.
13. JCGM 100:2008 (2008), Evaluation of measurement data – Guide to the expression of uncertainty in measurement, JCGM. 14. JCGM 106:2012 (2012), Evaluation of measurement data: The role of measurement uncertainty in conformity assessment, JCGM.
15. JCGM 200:2012 (2008), International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd ed., JCGM.
16. Kacker R.N., Kessel R., Sommer K.D. (2010), Assessing differences between results determined according to the guide to the expression of uncertainty in measurement, Journal of Resarch of the National Institute of Standards and Technology, 115: 453–459, doi: 10.6028/jres.115.031
17. Kessel R., Kacker R.N., Sommer K.D. (2011), Combining results from multiple evaluations of the same measurand, Journal of Resarch of the National Institute of Standards and Technology, 116: 809–820, doi: 10.6028/jres.116.023
18. Molenaar J., Cofino W.P., Torfs P.J.J.F. (2018), Efficient and robust analysis of interlaboratory studies, Chemometrics and Intelligent Laboratory Systems, 175: 65–73, doi: 10.1016/j.chemolab.2018.01.003
19. NIST/SEMATECH (2013), e-Handbook of Statistical Methods, Ch. 1.3.5.10, http://www.itl.nist.gov/div898/handbook/ (retrieved 12.08.2020).
20. PN-B-02151-02 (1987), Building acoustics – Noise protection of apartments in buildings – Permissible values of sound level in apartments [in Polish: Akustyka budowlana – Ochrona przed hałasem pomieszczen w budynkach – Dopuszczalne wartosci poziomu dzwieku w pomieszczeniach].
21. PN-B-02156 (1987), Building acoustics – Methods for measurement of sound power of A-level in buildings [in Polish: Akustyka budowlana – Metody pomiaru poziomu dzwieku A w budynkach].
22. Pozzer T., Wunderlich P., Monteneiro C., de Frias J. (2019), Interlaboratory and proficiency tests for field measurements in Brazil, [in:] INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol. 259, No. 1, pp. 8120–8130, Institute of Noise Control Engineering, http://www.sea-acustica.es/filead min/INTERNOISE_2019/Fchrs/Proceedings/2200.pdf.
23. Prezelj J., Murovec J. (2017), Traffic noise modelling and measurement: Inter-laboratory comparison, Applied Acoustics, 127: 160–168, doi: 10.1016/j.apacoust.2017.06.010.
24. Przysucha B., Batko W., Szelag A. (2015), Analysis of the accuracy of uncertainty noise measurement, Archives of Acoustics, 40(2): 183–189, doi: 10.1515/aoa-2015-0020.
25. Przysucha B., Szelag A., Pawlik P. (2020), Probability distributions of one-day noise indicators in the process of the type A uncertainty evaluation of longterm noise indicators, Applied Acoustics, 161: 107158, doi: 10.1016/j.apacoust.2019.107158.
26. Scamoni F. et al. (2009), Repeatability and reproducibility of field measurements in buildings, [in:] Proceedings of 8th European Conference on Noise Control 2009, EuroNoise09, Edinburgh, Scotland, UK, 26–28 October, 2009.
27. Scrosati C. et al. (2015), Uncertainty of faqade sound insulation measurements obtained by a round robin test: The influence of the low frequencies extension, [in:] Proceedings of the 22nd International Congress on Sound and Vibration (ICSV22), Florence, Italy, pp. 12– 16.
28. Scrosati C. et al. (2020), Towards more reliable measurements of sound absorption coefficient in reverberation rooms: An Inter-Laboratory Test, Applied Acoustics, 165: 107298, doi: 10.1016/j.apacoust.2020.107298
29. Seddeq H.S., Medhat A.A. (2011), Indoor noise measurements evaluations for HVAC-Unit using interlaboratory comparisons, International Journal of Metrology and Quality Engineering, 2(2): 75–81, doi: 10.1051/ijmqe/2011104
30. Szewczak E., Bondarzewski A. (2016), Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational?, Accreditation and Quality Assurance, 21(2): 91–100, doi: 10.1007/s00769-016-1195-y.
31. Trzpiot G. (2015), Some remarks of type III error for directional two-tailed test, Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 219: 5–16.
32. Walker W.E. et al. (2003), Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support, Integrated Assessment, 4(3): 5–17, doi: 10.1076/iaij.4.1.5.16466
33. Wszolek T. (2006), Effect of traffic noise statistical distribution on LAeq;T measurement uncertainty, Archives of Acoustics, 31(3): 311–318.