Details

Title

Effect of Cooling Rate on the Precipitation Characteristics of Cast Al–Si–Cu Alloy

Journal title

Archives of Foundry Engineering

Yearbook

2021

Volume

vo. 21

Issue

No 4

Affiliation

Okayasu, M. : Graduate School of Natural Science and Technology, Okayama University3-1-1 Tsushimanaka, Kita-ku, Okayama city, Okayama, 700-8530, Japan ; Sahara, N. : Graduate School of Natural Science and Technology, Okayama University3-1-1 Tsushimanaka, Kita-ku, Okayama city, Okayama, 700-8530, Japan ; Touda, M. : Kyowa Casting Co., Ltd.5418-3 Nishi Ebara-cho, Ibara city, Okayama, 715-0006, Japan

Authors

Keywords

aluminum alloy ; casting ; precipitation ; solid solution ; aging ; solidification rate

Divisions of PAS

Nauki Techniczne

Coverage

55-60

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Sepehrband, P., Mahmudi, R. & Khomamizadeh, F. (2005). Effect of Zr addition on the aging behavior of A319 aluminum cast alloy. Scripta Materialia. 52(4), 253-257.
[2] Rana, G., Zhoua, J.E. & Wang, Q.G. (2008). Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy. Journal of Materials Processing Technology. 207(1-3), 46-52.
[3] Tian, L., Guo, Y., Li, J., Xia, F., Liang, M. & Bai, Y. (2018). Effects of solidification cooling rate on the microstructure and mechanical properties of a Cast Al-Si-Cu-Mg-Ni piston alloy. Materials. 11(7), 1230.
[4] Choi, S.W., Kima, Y.M., Leea, K.M., Cho, H.S., Hong, S.K., Kim, Y.C., Kang, C.S. & Kumai, S. (2014). The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al–Si–Cu–Mg foundry alloys. Journal of Alloys and Compounds. 617, 654-659.
[5] Dobrzański, L.A., Maniara, R., Sokołowski, J. & Kasprzak, W. (2007). Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy. Journal of Materials Processing Technology. 191(1-3), 317-320.
[6] Shabel, B.S., Granger, D.A., Trucker, W.G. (1992). Friction and wear of aluminum-silicon alloys. In P.J. Blau (Eds.), ASM Handbook: Friction, Lubrication, and Wear Technology (pp. 785-794), ASM International.
[7] Son, S.K., Takeda, M., Mitome, M., Bando, Y. & Endo,T. (2005). Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures. Materials Letters. 59(6), 629-632.
[8] Wen-jun, T., Lin, Q. & Pi-xiang, Q. (2007). Study on heat treatment blister of squeeze casting parts. China Foundry. 4(2), 108-111.
[9] Okayasu, M., Sahara, N. & Mayama, K. (2021). Effect of microstructural characteristics on mechanical properties of cast Al–Si–Cu alloy controlled by Na. Materials Science and Engineering. A (in press).
[10] Hamasaki, M. & Miyahara, H. (2013). Solidification microstructure and critical conditions of shrinkage porosity generation in die casting process of JIS-ADC12 (A383) alloy. Materials Transactions. 54(7), 1131-1139.
[11] Kamio, A. (1996). Refinement of solidification structure in aluminum alloys. Japan Foundry Engineering Society. 68, 1075-1083.
[12] Okayasu, M. & Go, S. (2015). Precise analysis of effects of aging on mechanical properties of cast ADC12 aluminum alloy. Materials Science and Engineering. A 638, 208-218.
[13] David, S.A. & Vitek, J.M. (1989). Correlation between solidification parameters and weld microstructures. International Materials Reviews. 34(1), 213-245.

Date

2021.12.16

Type

Article

Identifier

DOI: 10.24425/afe.2021.138679
×