Details
Title
Quasi-analytical solutions for the whirling motion of multi-stepped rotors with arbitrarily distributed mass unbalance running in anisotropic linear bearingsJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
6Authors
Affiliation
Klanner, Michael : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria ; Prem, Marcel S. : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria ; Ellermann, Katrin : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, AustriaKeywords
Numerical Assembly Technique ; rotor dynamics ; whirling motion ; unbalance response ; quasi-analytical solutionDivisions of PAS
Nauki TechniczneCoverage
e138999Bibliography
- J.W. Lund and F.K. Orcutt, “Calculations and Experiments on the Unbalance Response of a Flexible Rotor,” J. Eng. Ind., vol. 89, no. 4, pp. 785–796, 1967.
- A. Vollan and L. Komzsik, Computational Techniques of Rotor Dynamics with the Finite Element Method. Boca Raton: CRC Press, 2012.
- J.S. Rao, Rotor Dynamics. New Delhi: New Age International, 1996.
- A.-C. Lee and Y.-P. Shih, “The Analysis of Linear Rotor-Bearing Systems: A General Transfer Matrix Method,” J. Vib. Acoust., vol. 115, no. 4, pp. 490–497, 1993.
- T. Yang and C. Lin, “Estimation of Distributed Unbalance of Rotors,” J. Eng. Gas Turbines Power, vol. 124, no. 4, pp. 976‒983, 2002.
- J.-S. Wu and H.-M. Chou, “A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses,” J. Sound Vib., vol. 81, no. 3, pp. 1–10, 1999.
- J.-S. Wu, F.-T. Lin, and H.-J. Shaw, “Analytical Solution for Whirling Speeds and Mode Shapes of a Distributed-Mass Shaft With Arbitrary Rigid Disks,” J. Appl. Mech., vol. 220, no. 3, pp. 451–468, 2014.
- M. Klanner and K. Ellermann, “Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements,” Appl. Comput. Mech., vol. 14, no. 1, pp. 31–50, 2020.
- M. Klanner, M.S. Prem, and K. Ellermann, “Steady-state harmonic vibrations of a linear rotor-bearing system with a discontinuous shaft and arbitrary distributed mass unbalance,” in Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics, Leuven, Belgium, Sep. 2020, pp. 1257–1272.
- H. Ziegler, “Knickung gerader Stäbe unter Torsion,” J. Appl. Math. Phys. (ZAMP), vol. 3, pp. 96–119, 1952.
- V.V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability. New York: Pergamon Press, 1963.
- H. Ziegler, Principles of Structural Stability. Basel: Springer Basel AG, 1977.
- L. Debnath and D. Bhatta, Integral Transforms and Their Applications. CRC Press, 2015.
- D. Mitrinović and J.D. Kečkić, The Cauchy Method of Residues. D. Reidel Publishing, 1984.
- S.I. Hayek, Advanced Mathematical Methods in Science and Engineering. CRC Press, 2010.
- B. Adcock, D. Huybrechs, and J. Martín-Vaquero, “On the Numerical Stability of Fourier Extensions,” Found. Comput. Math., vol. 14, no. 4, pp. 638–687, 2014.
- R. Matthysen and D. Huybrechs, “Fast Algorithms for the Computation of Fourier Extensions of Arbitrary Length,” SIAM J. Sci. Comput., vol. 38, no. 2, pp. A899–A922, 2016.
- A.-C. Lee, Y. Kang, and L. Shin-Li, “A Modified Transfer Matrix Method for Linear Rotor-Bearing Systems,” J. Appl. Mech., vol. 58, no. 3, pp. 776–783, 1991.
- M.I. Friswell, J.E. T. Penny, S.D. Garvey, and A.W. Lees, Dynamics of Rotating Machines. New York: Cambridge University Press, 2010.
- A. De Felice and S. Sorrentino, “On the dynamic behaviour of rotating shaftsunder combined axial and torsional loads,” Meccanica, vol. 54, no. 7, pp. 1029–1055, 2019.
- R.L. Eshleman and R.A. Eubanks, “On the Critical Speeds of a Continuous Rotor,” J. Manuf. Sci. Eng., vol. 91, no. 4, pp. 1180‒1188, 1969.