Details
Title
Transient simulation of a squeeze film damped turbocharger rotor under consideration of fluid inertia and cavitationJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
6Authors
Affiliation
Drapatow, Thomas : Institute of Mechanics, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany ; Alber, Oliver : MAN Energy Solutions SE, 86153 Augsburg, Germany ; Woschke, Elmar : Institute of Mechanics, Otto von Guericke University Magdeburg, 39106 Magdeburg, GermanyKeywords
rotor dynamics ; journal bearings ; squeeze film dampers ; fluid inertiaDivisions of PAS
Nauki TechniczneCoverage
e139201Bibliography
- M.B. Banerjee, R. Shandil, S. Katyal, G. Dube, T. Pal, and K. Banerjee, “A nonlinear theory of hydrodynamic lubrication,” J. Math. Anal. Appl., vol. 117, no. 1, pp. 48–56, 1986.
- S. Hamzehlouia and K. Behdinan, “Squeeze film dampers supporting high-speed rotors: Fluid inertia effects,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., vol. 234, no. 1, pp. 18–32, 2020.
- M. Ramli, J. Ellis, and J. Roberts, “On the computation of inertial coefficients in squeeze-film bearings,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 201, no. 2, pp. 125–131, 1987, doi: 10.1243/PIME_PROC_1987_201_095_02.
- E. Reinhardt and J. Lund, “Influence of fluid inertia on the dynamic properties of journal bearings.” J. Lubr. Technol., vol. 97 Ser F, no. 2, pp. 159–167, 1975.
- A.Z. Szeri, A.A. Raimondi, and A. Giron-Duarte, “Linear Force Coefficients for Squeeze-Film Dampers,” J. Lubr. Technol., vol. 105, no. 3, pp. 326–334, 07 1983.
- A.Z. Szeri, Fluid Film Lubrication: Theory and Design. Cambridge University Press, 1998.
- Z. Guo, T. Hirano, and R.G. Kirk, “Application of CFD analysis for rotating machinery: Part 1 — hydrodynamic, hydrostatic bearings and squeeze film damper,” in Volume 4: Turbo Expo 2003. ASME, 2003, doi: 10.1115/gt2003-38931.
- C. Xing, M.J. Braun, and H. Li, “A three-dimensional navierstokes- based numerical model for squeeze film dampers. part 2—ef- fects of gaseous cavitation on the behavior of the squeeze film damper,” Tribol. Trans., vol. 52, no. 5, pp. 695–705, Sep 2009, doi: 10.1080/10402000902913311.
- V. Constantinescu, Laminar Viscous Flow. Berlin Heidelberg: Springer Science & Business Media, 2012.
- J. Gehannin, M. Arghir, and O. Bonneau, “Complete squeezefilm damper analysis based on the “bulk flow” equations,” Tribol. Trans., vol. 53, no. 1, pp. 84–96, 2009, doi: 10.1080/10402000903226382.
- S. Lang and S. Verlag, Effiziente Berechnung von Gleitlagern und Dichtspalten in Turbomaschinen, ser. Forschungsberichte zur Fluidsys- temtechnik. Shaker Verlag, 2018.
- H. Peeken and J. Benner, “Beeinträchtigung des Druckaufbaus in Gleitlagern durch Schmierstoffverschäumung,” in Gleit- und Wäl- zlagerungen: Gestaltung, Berechnung, Einsatz; Tagung Neu-Ulm, 14. und 15. März 1985 / VDI-Ges. Entwicklung, Konstruktion, Vertrieb. – (VDI-Berichte; 549), 2013, pp. 373–397.
- Ü. Mermertas, “Nichtlinearer Einfluss von Radialgleitlagern auf die Dynamik schnelllaufender Rotoren, Dissertation,” Düren, Aachen, 2003.
- E. Woschke, C. Daniel, and S. Nitzschke, “Excitation mechanisms of non-linear rotor systems with floating ring bearings – simulation and validation,” Int. J. Mech. Sci., vol. 134, pp. 15‒27, 2017, doi: 10.1016/j.ijmecsci.2017.09.038.
- R. Eymard, G. Thierry, and R. Herbin, “Handbook of numerical analysis,” vol. 7, pp. 731–1018, 01 2000.
- V.V. Moca, A. Nagy-Dăbâcan, H. Bârzan, and R. C. Mure¸san, “Superlets: time-frequency super-resolution using wavelet sets,” bioRxiv, 2019.
- S. Hamzehlouia and K. Behdinan, “A study of lubricant inertia effects for squeeze film dampers incorporated into highspeed turboma- chinery,” Lubricants, vol. 5, p. 43, 10 2017, doi: 10.3390/lubricants5040043.
- L. San Andrés and J. Vance, “Effects of fluid inertia and turbulence on the force coefficients for squeeze film dampers,” J. Eng. Gas Turbines Power, vol. 108, 04 1986, doi: 10.1115/1.3239908.