Details
Title
Modelling and analysis of fibre microlenses with ray-tracing and finite-difference methodsJournal title
Opto-Electronics ReviewYearbook
2022Volume
30Issue
1Affiliation
Śliwak, Adam : Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Jeleń, Mateusz : Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Patela, Sergiusz : Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, PolandAuthors
Keywords
finite-difference time-domain method ; knife-edge method ; microlens ; ray-tracingDivisions of PAS
Nauki TechniczneCoverage
e140147Publisher
Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of TechnologyBibliography
- Tekin, T. Review of packaging of optoelectronic, photonic, and MEMS components. IEEE J. Sel. Quantum Electron. 17, 704–719 (2011). https://doi.org/10.1109/JSTQE.2011.2113171
- Zheng, W. Optic Lenses Manufactured on Fibre Ends. in 2015 Optoelectronics Global Conference (OGC) 1–7 (IEEE, 2015). https://doi.org/10.1109/OGC.2015.7336855
- Corning SMF-28 Ultra Optical Fibre. Corning. https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (2014) (Accessed Sept. 3rd, 2021) .
- Soldano, L. B. & Pennings, E. C. M. Optical multi-mode inter-ference devices based on self- imaging: principles and applications. J. Light. Technol. 13, 615–627 (1995). https://doi.org/10.1109/50.372474
- Yuan, W., Brown, R., Mitzner, W., Yarmus, L. & Li, X. Super-achromatic monolithic microprobe for ultrahigh-resolution endo-scopic optical coherence tomography at 800 nm. Commun. 8, 1531 (2017). https://doi.org/10.1038/s41467-017-01494-4
- Liu, Z. L. et al. Fabrication and application of a non-contact double-tapered optical fibre tweezers. Express 25, 22480–22489 (2017). https://doi.org/10.1364/oe.25.022480
- Astratov, V. et al. Photonic Nanojets for Laser Surgery. (SPIE Newsroom, 2010).
- Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in Nat. Photonics 12, 540–547 (2018). https://doi.org/10.1038/s41566-018-0224-2
- Siegman, A. E. Lasers. (University Science Books, 1986).
- Ross, T. S. Laser Beam Quality Metrics. Laser Beam Quality Metrics (SPIE, 2013).
- OSLO Optics Software for Layout and Optimization. Optics Reference. (Lambda Research Corporation, Littleton, MA, USA, 2011). https://www.lambdares.com/wp- content/uploads/support/oslo/oslo_edu/oslo-optics-reference.pdf
- Fibre Lenses. Fibrain. https://photonics.fibrain.com/produkt/fibre-lenses,640.html#zdjecia (2020) (Accessed Aug. 29th, 2020) .
- Parsons, J., Burrows, C. P., Sambles, J. R. & Barnes, W. L. A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. J. Mod. Opt. 57, 356–365 (2010). https://doi.org/10.1080/09500341003628702
- Schneider, J. B. Understanding the Finite-Difference Time-Domain Method. https://eecs.wsu.edu/~schneidj/ufdtd/ufdtd.pdf (2021).
- Bachmann, L., Zezell, D. M. & Maldonado, E. P. Determination of beam width and quality for pulsed lasers using the knife‐edge method. Instrum. Sci. Technol. 31, 47–52 (2003). https://doi.org/10.1081/CI-120018406