Details

Title

Modelling and analysis of fibre microlenses with ray-tracing and finite-difference methods

Journal title

Opto-Electronics Review

Yearbook

2022

Volume

30

Issue

1

Authors

Affiliation

Śliwak, Adam : Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Jeleń, Mateusz : Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Patela, Sergiusz : Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland

Keywords

finite-difference time-domain method ; knife-edge method ; microlens ; ray-tracing

Divisions of PAS

Nauki Techniczne

Coverage

e140147

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Tekin, T. Review of packaging of optoelectronic, photonic, and MEMS components. IEEE J. Sel. Quantum Electron. 17, 704–719 (2011). https://doi.org/10.1109/JSTQE.2011.2113171
  2. Zheng, W. Optic Lenses Manufactured on Fibre Ends. in 2015 Optoelectronics Global Conference (OGC) 1–7 (IEEE, 2015). https://doi.org/10.1109/OGC.2015.7336855
  3. Corning SMF-28 Ultra Optical Fibre. Corning. https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (2014) (Accessed Sept. 3rd, 2021) .
  4. Soldano, L. B. & Pennings, E. C. M. Optical multi-mode inter-ference devices based on self- imaging: principles and applications. J. Light. Technol. 13, 615–627 (1995). https://doi.org/10.1109/50.372474
  5. Yuan, W., Brown, R., Mitzner, W., Yarmus, L. & Li, X. Super-achromatic monolithic microprobe for ultrahigh-resolution endo-scopic optical coherence tomography at 800 nm. Commun. 8, 1531 (2017). https://doi.org/10.1038/s41467-017-01494-4
  6. Liu, Z. L. et al. Fabrication and application of a non-contact double-tapered optical fibre tweezers. Express 25, 22480–22489 (2017). https://doi.org/10.1364/oe.25.022480
  7. Astratov, V. et al. Photonic Nanojets for Laser Surgery. (SPIE Newsroom, 2010).
  8. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in Nat. Photonics 12, 540–547 (2018). https://doi.org/10.1038/s41566-018-0224-2
  9. Siegman, A. E. Lasers. (University Science Books, 1986).
  10. Ross, T. S. Laser Beam Quality Metrics. Laser Beam Quality Metrics (SPIE, 2013).
  11. OSLO Optics Software for Layout and Optimization. Optics Reference. (Lambda Research Corporation, Littleton, MA, USA, 2011). https://www.lambdares.com/wp- content/uploads/support/oslo/oslo_edu/oslo-optics-reference.pdf
  12. Fibre Lenses. Fibrain. https://photonics.fibrain.com/produkt/fibre-lenses,640.html#zdjecia (2020) (Accessed Aug. 29th, 2020) .
  13. Parsons, J., Burrows, C. P., Sambles, J. R. & Barnes, W. L. A  comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. J. Mod. Opt. 57, 356–365 (2010). https://doi.org/10.1080/09500341003628702
  14. Schneider, J. B. Understanding the Finite-Difference Time-Domain Method. https://eecs.wsu.edu/~schneidj/ufdtd/ufdtd.pdf (2021).
  15. Bachmann, L., Zezell, D. M. & Maldonado, E. P. Determination of beam width and quality for pulsed lasers using the knife‐edge method. Instrum. Sci. Technol. 31, 47–52 (2003). https://doi.org/10.1081/CI-120018406

Date

31.01.2022

Type

Article

Identifier

DOI: 10.24425/opelre.2022.140147
×