Szczegóły
Tytuł artykułu
Proposal for application of risk analysis to assess robustness of floor slabs pre-stressed with unbonded tendomsTytuł czasopisma
Archives of Civil EngineeringRocznik
2022Wolumin
vol. 68Numer
No 1Afiliacje
Woliński, Szczepan : Rzeszów University of Technology, The Faculty of Civil and Environmental Engineering and Architecture, Powstanców Warszawy 12, 35-084 Rzeszów, Poland ; Pytlowany, Tomasz : Carpathian State College in Krosno, Politechnik Institutution, Dmochowskiego 12, 38-400 Krosno, PolandAutorzy
Słowa kluczowe
unbounded prestress ; flat slabs ; risk analysis ; fuzzy logic ; FEM method ; robustnessWydział PAN
Nauki TechniczneZakres
241-253Wydawca
WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCESBibliografia
[1] F. Knoll, T. Vogel, Design for Robustness. Structural Engineering Documents No11. Zurich: IABSE, 2009, ISBN 978-3-85748-120-8.[2] Santa Fe Institute, RS-2001-009, Working definitions of robustness, 2001. [Online].Available: http://discuss.santafe.edu/robustness/sories.
[3] E.A.P. Liberati, C.G. Nogueira, E.D. Leonel, “Nonlinear formulation based on FEM, Mazars damage criterion and Fick’s law applied to failure assessment of reinforced concrete structures subjected to chloride ingress and reinforcements corrosion”, Engineering Failure Analysis, 2014, vol. 46, pp. 247–268, DOI: 10.1016/j.engfailanal.2014.09.006.
[4] N.C. Lind, “Measures of vulnerability and damage tolerance”, Reliability Engineering & System Safety, 1995, vol. 48, no. 1, pp. 1–6.
[5] D.M. Frangopol, J.P. Curly, “Effects of damage and redundancy on structural realibility”, Journal of Structural Engineering, 1987, vol. 113, no. 7, pp. 1533–1549.
[6] S. Woo, D.L. O’Neal, “Reliability design and case study of mechanical system like a hinge kit system in refrigerator subjected to repetitive stresses”, Engineering Failure Analysis, 2019, vol. 99, pp. 319–329, DOI: 10.1016/j.engfailanal.2019.02.015.
[7] I.W. Baker, M. Schubert, M.H. Faber, “On assessment of robustness”, Journal of Structural Safety, 2008, vol. 30, pp. 253–267.
[8] ISO Standard 19902, Petroleum and natural gas industries – Fixed steel offshore structures, 2008.
[9] T. Vrouwenvelder, et al., Eds. Risk assessment and risk communication in civil engineering. CIB Report, 259. Rotterdam: CIB General Secretariat, 2001.
[10] EN 1991-1-7, Eurocode 1 – Actions on structures – Part 1–7: General actions – Accidental actions.
[11] A. del Caño, M. Pilar de la Cruz, D. Gómez, M. Pérez, “Fuzzy method for analysing uncertainty in the sustainable design of concrete structures”, Journal of Civil Engineering and Management, 2016, vol. 22, no. 7, pp. 924–935, DOI: 10.3846/13923730.2014.928361.
[12] S. Boral, I. Howard, S.K. Chaturvedi, K. Mc Kee, V.N.A. Naikan, “An integrated approach for fuzzy failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA”, Engineering Failure Analysis, 2020, vol. 108, ID Article: 104195, DOI: 10.1016/j.engfailanal.2019.104195.
[13] Sz.Wolinski, “Defining of the structural robustness”, Bulletin of the Polish Academy of Sciences, Technical Sciences, 2013, vol. 61, no. 1, pp. 137–144, DOI: 10.2478/bpasts-2013-0012.
[14] H. Bandamer, S. Gottwald, Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications. Chichester: J.Wiley & Sons, 1995.
[15] EN 1990:2004 Eurocode- Basis of structural design.
[16] G. Harding, J. Carpenter, “Disproportional collapse of Class 3 buildings: the use of risk assessment”, The Structural Engineering, 2009, vol. 87, no. 15-16, pp. 29–34.
[17] Bai Yu, Hou Jian, Huang Yuan, “Progressive collapse analysis and structural robustness of steel-framed modular buildings”, Engineering Failure Analysis, 2019, vol. 104, pp. 643–656, DOI: 10.1016/j.engfailanal. 2019.06.044.
[18] G. Milani, M. Valente, “Comparative pushover and limit analyses on seven masonry churches damaged by the 2012 Emilia-Romagna (Italy) seismic events: Possibilities of non-linear finite elements compared with pre-assigned failure mechanisms”, Engineering Failure Analysis, 2015, vol. 47, Part A, pp. 129–161, DOI: 10.1016/j.engfailanal.2014.09.016.
[19] Sz. Wolinski, T. Pytlowany, “Analysis of the state of prestressed structure using data collection simulation technique”, MATEC Web of Conferences, 2019, vol. 262, DOI: 10.1051/matecconf/201926208006.
[20] Sz. Wolinski, T. Pytlowany, “Risk and robustness assessment for floor slabs prestressed with unbonded tendons”, in Konstrukcje betonowe i stalowe, (in Polish). Bydgoszcz: University of Science & Technology, 2015, pp. 137–144.
[21] Sz. Wolinski, “Robustness and vulnerability of slab structures”, Procedia Engineering, 2017, vol. 193, pp. 88–95, DOI: 10.1016/j.proeng.2017.06.190.
[22] JCSS: Probabilistic Model Code, The Joint Committee on Structural Safety. [Online]. Available: https://www.jcss-lc.org/jcss-probabilistic-model-code/.
[23] E.A.P. Liberati, C.G. Nogueira, E.D. Leonel, “Nonlinear formulation based on FEM, Mazars damage criterion and Fick’s law applied to failure assessment of reinforced concrete structures subjected to chloride ingress and reinforcements corrosion”, Engineering Failure Analysis, 2014, vol. 46, pp. 247–268, DOI: 10.1016/j.engfailanal.2014.09.006.
[24] B. Rodowitz, M. Schubert, M. Faber Havbro, “Robustness of Externally and Internaly Post Tensioned Bridges”, Beton und Stahlbetonbau, 2008, vol. 103, pp. 16–22, DOI: 10.1002/best.200810111.
[25] B. Rodowitz, Robustheit von Balkenbrucker mit externer und interner Vorspannung. Institut fur Massivbau und Baustofftechnologie, Abtailung Massivebau. Karlsruhe: Universitat Karlsruhe, 2007 (in German).
[26] A. Setareh, H. Saffari, J. Mashhadi, “Assessment of dynamic increase factor for progressive collapse analysis of RC structures”, Engineering Failure Analysis, 2018, vol. 84, pp. 300–310, DOI: 10.1016/j.engfailanal.2017.11.011.
[27] I. Skrzypczak, L. Buda–Ozóg, T. Pytlowany, “Fuzzy method of conformity control for compressive strength of concrete on the basis of computational numerical analysis”, Meccanica, 2016, vol. 51, no. 2, pp. 383–389, DOI: 10.1007/s11012-015-0291-0.
[28] Sz. Wolinski, T. Pytlowany, “Parametric Analysis of the Sensitivity of a Prestressed Concrete Beam Using the DOE Simulation Technique”, Archives of Civil Engineering, 2019, vol. 65, no. 4, pp. 97–112, DOI: 10.2478/ace-2019-0049.