Details

Title

Mechanical and Thermal Properties of Aluminum Foams Manufactured by Investment Casting Method

Journal title

Archives of Foundry Engineering

Yearbook

2022

Volume

vol. 22

Issue

No 1

Affiliation

Dmitruk, A. : Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland ; Kapłon, H. : Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland ; Naplocha, K. : Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland

Authors

Keywords

mechanical properties ; Innovative foundry technologies and materials ; Metal foams ; Investment casting ; compressive strength

Divisions of PAS

Nauki Techniczne

Coverage

37-42

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Bisht, A., Patel, V.K. & Gangil, B. (2019). Future of metal foam materials in automotive industry. In Jitendra K. K., Shantanu B., Vinay K. P. & Vikram K. (Eds.), Automotive Tribology, (pp. 51-63). Springer, Singapore, DOI: 10.1007/978-981-15-0434-1_4.
[2] Almonti, D., Baiocco, G., Mingione, E. & Ucciardello, N. (2020). Evaluation of the effects of the metal foams geometrical features on thermal and fluid-dynamical behavior in forced convection. The International Journal of Advanced Manufacturing Technology. 111(3), 1157-1172. DOI: 10.1007/S00170-020-06092-1.
[3] Sivasankaran, S. & Mallawi, F.O.M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model. Case Studies in Thermal Engineering. 26, 101095. DOI: 10.1016/J.CSITE.2021.101095.
[4] Anglani, A., Pacella, M. (2021). Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells. In 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 15-17 July 2020 (pp. 307–312). Gulf of Naples, Italy: The International Academy for Production Engineering.
[5] Anglani, A., Pacella, M. (2018). Logistic Regression and Response Surface Design for Statistical Modeling of Investment Casting Process in Metal Foam Production. In 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 19-21 July 2017 (pp. 504–509). Gulf of Naples, Italy: The International Academy for Production Engineering.
[6] Kryca, J., Iwaniszyn, M., Piątek, M., Jodłowski, P.J., Jędrzejczyk, R., Pędrys, R., Wróbel, A., Łojewska, J., Kołodziej, A. (2016). Structured foam reactor with CuSSZ-13 catalyst for SCR of NOx with ammonia. Topics in Catalysis. 59(10), 887-894. DOI: 10.1007/S11244-016-0564-4.
[7] Alamdari, A. (2015). Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support. Journal of Natural Gas Science and Engineering. 27, 934-944. DOI: 10.1016/J.JNGSE.2015.09.037.
[8] Vilniškis, T., Januševičius, T. & Baltrėnas, P. (2020). Case study: Evaluation of noise reduction in frequencies and sound reduction index of construction with variable noise isolation. Noise Control Engineering Journal. 68(3), 199-208. DOI: 10.3397/1/376817.
[9] Hua, L., Sun, H. & Gu Jiangsu, J. (2016). Foam metal metamaterial panel for mechanical waves isolation. Conference: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. DOI: 10.1117/12.2219470.
[10] Wang, Y., Jiang, S., Wu, Z., Shao, H., Wang, K. & Wang, L. (2018). Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. Journal of Loss Prevention in the Process Industries. 56, 451-457. DOI: 10.1016/J.JLP.2018.09.009.
[11] Marx, J. & Rabiei, A. (2017). Overview of composite metal foams and their properties and performance. Advanced Engineering Materials. 19(11), 1600776. DOI: 10.1002/ADEM.201600776.
[12] Tong, X., Shi, Z., Xu, L., Lin, J., Zhang, D., Wang, K., Li, Y., Wen, C. (2020). Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomaterialia. 102, 481-492. DOI: 10.1016/J.ACTBIO.2019.11.031
[13] Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 46, 559-632. DOI: 10.1016/S0079-6425(00)00002-5.
[14] Schüler, P., Fischer, S.F., Bührig-Polaczek, A. & Fleck, C. (2013). Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading. Materials Science and Engineering: A, 587, 250-261. DOI: 10.1016/J.MSEA.2013.08.030.
[15] Schüler, P., Frank, R., Uebel, D., Fischer, S.F., Bührig-Polaczek, A. & Fleck, C. (2016). Influence of heat treatments on the microstructure and mechanical behaviour of open cell AlSi7Mg0.3 foams on different lengthscales. Acta Materialia. 109, 32-45. DOI: 10.1016/J.ACTAMAT.2016.02.041.
[16] Luksch, J., Bleistein, T., Koenig, K., Adrien, J., Maire, E. & Jung, A. (2021). Microstructural damage behaviour of Al foams. Acta Materialia. 208, 116739. DOI: 10.1016/J.ACTAMAT.2021.116739.
[17] Sathaiah, S., Dubey, R., Pandey, A., Gorhe, N.R., Joshi, T. C., Chilla, V., Muchhala, D., Mondal, D.P. (2021). Effect of spherical and cubical space holders on the microstructural characteristics and its consequences on mechanical and thermal properties of open-cell aluminum foam. Materials Chemistry and Physics. 273, 125115. DOI: 10.1016/j.matchemphys.2021.125115
[18] Qu, Z. (2018). Heat transfer enhancement technique of pcms and its lattice Boltzmann modeling. In Mohsen Sheikholeslami Kandelousi (Eds.), Thermal Energy Battery with Nano-enhanced PCM. IntechOpen Limited, London, UK. DOI: 10.5772/INTECHOPEN.80574
[19] Tian, Y. & Zhao, C.Y. (2011). A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy. 36, 5539-5546. DOI: 10.1016/j.energy.2011.07.019.
[20] Novak, N., Vesenjak, M., Duarte, I., Tanaka, S., Hokamoto, K., Krstulović-Opara, L., Guo, B., Chen, P., Ren, Z. (2019). Compressive behaviour of closed-cell aluminium foam at different strain rates. Materials. 12(24), 4108. DOI: 10.3390/MA12244108.
[21] Naplocha, K., Dmitruk, A., Mayer, P. & Kaczmar, J.W. (2019). Design of honeycomb structures produced by investment casting. Archives of Foundry Engineering. 19(4), 76-80. DOI: 10.24425/AFE.2019.129633.
[22] Zhou, J. & Soboyejo, W.O. (2004). Compression–compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment. Materials Science and Engineering A. 369(1-2), 23-35. DOI: 10.1016/J.MSEA.2003.08.009.
[23] Jang, W.Y. & Kyriakides, S. (2009). On the crushing of aluminum open-cell foams: Part I. Experiments. International Journal of Solids and Structures. 46(3-4), 617-634. DOI: 10.1016/J.IJSOLSTR.2008.09.008.
[24] Krstulović-Opara, L., Vesenjak, M., Duarte, I., Ren, Z. & Domazet, Z. (2016). Infrared thermography as a method for energy absorption evaluation of metal foams. Materials Today: Proceedings. 3(4), 1025-1030. DOI: 10.1016/J.MATPR.2016.03.041.
[25] Naplocha, K., Koniuszewska, A., Lichota, J. & Kaczmar, J. W. (2016). Enhancement of heat transfer in PCM by vellular Zn-Al structure. Archives of Foundry Engineering. 16(4), 91-94. DOI: 10.1515/AFE-2016-0090

Date

2022.03.08

Type

Article

Identifier

DOI: 10.24425/afe.2022.140214
×