Details
Title
Effect of Methyl Silicone Oil to Moisture Resistance of Sodium Silicate Sands by Microwave HardeningJournal title
Archives of Foundry EngineeringYearbook
2022Volume
vol. 22Issue
No 1Authors
Affiliation
Wang, Huafang : School of Mechanical Engineering and Automation, Wuhan Textile University, China ; Gao, Xiang : School of Mechanical Engineering and Automation, Wuhan Textile University, China ; Yang, Lei : School of Mechanical Engineering and Automation, Wuhan Textile University, China ; He, Wei : School of Mechanical Engineering and Automation, Wuhan Textile University, China ; Lu, Jijun : School of Mechanical Engineering and Automation, Wuhan Textile University, ChinaKeywords
Sodium silicate sands ; Microwave hardening ; Methyl silicone oil ; Moisture absorptionDivisions of PAS
Nauki TechniczneCoverage
43-47Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Stachowicz, M., Pałyga, Ł. & Kȩpowicz, D. (2020). Influence of automatic core shooting parameters in hot-box technology on the strength of sodium silicate olivine moulding sands. Archives of Foundry Engineering. 20(1), 67-72.[2] Nowak, D.(2017).The impact of microwave penetration depth on the process of hardening the moulding sand with sodium silicate. Archives of Foundry Engineering. 17(4), 115-118.
[3] Gal, B., Granat, K. & Nowak, D. (2017). Effect of compaction degree on permittivity of water-glass containing moulding sand. Metalurgija. 56(1), 17-20.
[4] Kaźnica, N. & Zych, J. (2019). Indicator wso: a new parameter for characterization of protective coating efficiency against humidity. Journal of Materials Engineering and Performance. 28(7), 3960-3965.
[5] Bae, M.A., Lee, M.S. & Baek, J.H. (2020). The effect of the surface energy of water glass on the fluidity of sand. Journal of Korean Institute of Metals and Materials. 58(5), 319-325.
[6] Peng, Q.S., Wang, P.C., Huang, W., & Chen, H.B. (2020). The irradiation-induced grafting of nano-silica with methyl silicone oil. Polymer. 192(4), 122315.
[7] Stachowicz, M., Granat, K., & Payga. (2017). Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods. Archives of Metallurgy and Materials. 62(1), 379-383.
[8] Zhu, C. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1), 13-17.
[9] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the humidity resistance of sodium silicate sands by ester-microwave composite hardening. Metalurgija. 53(4), 455-458.
[10] Masuda, Y., Tsubota, K., Ishii, K., Imakoma, H. & Ohmura, N. (2009). Drying rate and surface temperature in solidification of glass particle layer with inorganic binder by microwave drying. KAGAKU KOGAKU RONBUNSHU. 35(2), 229-231.
[11] Kosuge, K., Sunaga, M., Goda, R., Onodera, H. & Okane, T. (2018). Cure and collapse mechanism of inorganic mold using spherical artificial sand and water glass binder. Materials transactions. 59(11), 1784-1790.
[12] Zhang, Y.H., Liu, Z.Y., Liu, Z.C. & Yao, L.P. (2020). Mechanical properties of high-ductility cementitious composites with methyl silicone oil. Magazine of Concrete Research. 72(14), 747-756.