Details

Title

Wettability of the System of Cast Iron and Magnesia Ceramics with Graphite

Journal title

Archives of Foundry Engineering

Yearbook

2022

Volume

vol. 22

Issue

No 3

Authors

Affiliation

Hosadyna-Kondracka, M. : Łukasiewicz Research Network - Krakow Institute of Technology, Poland ; Nowak, R. : Łukasiewicz Research Network - Krakow Institute of Technology, Poland ; Turalska, P. : Łukasiewicz Research Network - Krakow Institute of Technology, Poland ; Bruzda, G. : Łukasiewicz Research Network - Krakow Institute of Technology, Poland ; Boroń, Ł. : Łukasiewicz Research Network - Krakow Institute of Technology, Poland ; Wawrylak, M. : Łukasiewicz Research Network - Krakow Institute of Technology, Poland

Keywords

Composites ; Metal-ceramic bonding ; Wettability ; Sessile drop method ; Cast iron

Divisions of PAS

Nauki Techniczne

Coverage

25-33

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Sobczak, N., Sobczak, J.J., Kolev, M., Drenchev, L., Turalska, P., Homa, M., Kudyba, A. & Bruzda, G. (2020). High-temperature interaction of molten gray cast iron with Al2O3-ZrO2-SiO2 ceramic. Journal of Materials Engineering and Performance. 29, 2499-2505. DOI: 10.1007/s11665-020-04695-z. [2] Malaki, M., Fadaei Tehrani, A., Niroumand, B. & Gupta, M. (2021). Wettability in metal matrix composites. Metals. 11(7), 1034. DOI: 10.3390/met11071034. [3] Sobczak, N., Singh, M. & Asthana, R. (2005). High-temperature wettability measurements in metal/ceramic systems – Some methodological issues. Current Opinion in Solid State & Materials Science. 9(4-5), 241-253. DOI: 10.1016/j.cossms.2006.07.007. [4] Szafran, M., Rokicki, G., Lipiec, W., Konopka, K. & Kurzydłowski K. (2002). Porous ceramics infilted with metals and polymers. Composites. 2(5), 313-317. (in Polish). [5] Madzivhandila T., Bhero, S. & Varachia F. (2019). The influence of titanium addition on wettability of high-chromium white cast iron-matrix composites. Journal of Composite Materials. 53(11), 1567-1576. DOI: 10.1177/0021998318804616. [6] Asthana R. & Sobczak N. (2000). Wettability, spreading, and interfacial phenomena in high-temperature coatings. Retrieved September 28, 2021, from https://www.researchgate.net/profile/Natalia-Sobczak/publication/234787198_Wettability_Spreading_and_Interfacial_Phenomena_in_HighTemperature_Coatings/links/02e7e51acdbb31120a000000.pdf. [7] Janas, A., Kolbus, A. & Olejnik, E. (2009). On the character of matrix-reinforcing particle phase boundaries in MeC and MeB (Me = W, Zr, Ti, Nb, Ta) in-situ composites. Archives of Metallurgy and Materials 54(2), 319-327. [8] Moreira, A. B., Sousa, R. O., Lacerda, P., Ribeiro, L. M. M., Pinto, A. M. & Vieira, M. F. (2020). Microstructural characterization of TiC–white cast-iron composites fabricated by in situ technique. Materials. 13(1), 209. DOI: 10.3390/ma13010209. [9] Sobczak, N., Nowak, R., Radziwill, W., Budzioch, J. & Glenz A. (2008). Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering 495(1-2), 43-49. DOI: 10.1016/j.msea.2007.11.094. [10] ASTRA Reference book. IENI, Report, Oct. 2007 [11] Liggieri, L. & Passerone, A.(1989). An automatic technique for measuring the surface tension of liquid metals. High Temperature Technology. 7, 80-86. [12] Bacior, M., Sobczak, N., Homa, M., Turalska, P., Kudyba, A., Bruzda, G., Nowak, R. & Pytel, A. (2017). High-temperature interaction of molten vermicular graphite cast iron with Al2O3 substrate. The Transactions of the Foundry Research Institute. 4/2017, 375-384. DOI: 10.7356/iod.2017.41. [13] Shen, P., Zhang, L., Zhou, H., Ren, Y. & Wang, Y. (2017). Wettability between Fe-Al alloy and sintered MgO. Ceramics International. 43(10), 7674-7681. DOI: 10.1016/J.CERAMINT.2017.03.067

Date

2022.08.03

Type

Article

Identifier

DOI: 10.24425/afe.2022.140233
×