Details

Title

Van der Waals materials for HOT infrared detectors: A review

Journal title

Opto-Electronics Review

Yearbook

2022

Volume

30

Issue

1

Authors

Affiliation

Rogalski, Antoni : Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland

Keywords

2D material photodetectors ; transition metal dichalcogenides photodetectors ; HgCdTe photodiodes ; high operating temperature infrared detectors

Divisions of PAS

Nauki Techniczne

Coverage

e140551

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Rogalski, A. 2D Materials for Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2020).
  2. Rogalski, A. Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2019).
  3. Rogalski, A. Quantum well photoconductors in infrared detector technology. Appl. Phys. 93, 4355–4391 (2003). https://doi.org/10.1063/1.1558224
  4. Kinch, M. A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, 2014).
  5. Rogalski, A., Martyniuk P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Prog. Phys. 79, 046501-1–42 (2016). https://doi.org/10.1088/0034-4885/79/4/046501
  6. Rogalski, A., Martyniuk, P., Kopytko, M. & Hu, W. Trends in performance limits of the HOT infrared photodetectors. Sci. 11, 501 (2021). https://doi.org/10.3390/app11020501
  7. Piotrowski J. & Rogalski, A. Comment on “Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe” [J. Appl. Phys. 74, 4774 (1993)]. Appl. Phys. 80, 2542–2544 (1996). https://doi.org/10.1063/1.363043
  8. Robinson, J., Kinch, M., Marquis, M., Littlejohn, D. & Jeppson, K. Case for small pixels: system perspective and FPA challenge. SPIE 9100, 91000I-1–10 (2014). https://doi.org/10.1117/12.2054452
  9. Holst  C. & Lomheim, T. C. CMOS/CCD Sensors and Camera Systems. (JCD Publishing and SPIE Press, Winter Park, 2007).
  10. Holst, G. C. & Driggers, R. G. Small detectors in infrared system design. Eng. 51, 096401-1–10 (2012).
  11. Boreman, G. D. Modulation Transfer Function in Optical and Electro-Optical Systems. (2nd edition) (SPIE Press, Bellingham, 2021).
  12. Higgins, W. M., Seiler, G. N., Roy, R. G. & Lancaster, R. A. Standard relationships in the properties of Hg1–xCdx J. Vac. Sci. Technol. A 7, 271–275 (1989). https://doi.org/10.1116/1.576110
  13. Chu, J. H., Li, B., Liu, K. & Tang, D. Empirical rule of intrinsic absorption spectroscopy in Hg1−xCd x J. Appl. Phys. 75, 1234 (1994). https://doi.org/10.1063/1.356464
  14. Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4, 2962−2970 (2017). https://doi.org/10.1021/acsphotonics.7b01103
  15. Kinch, M. A. et al. Minority carrier lifetime in p-HgCdTe. Electron. Mater. 34, 880–884 (2005). https://doi.org/10.1007/s11664-005-0036-2
  16. Lee, D. et al. Law 19: the ultimate photodiode performance metric. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  17. Yang, Z., Dou, J. & Wang, M. Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. in Two-Dimensional Materials for Photodetector (ed. Nayak, P. K.) 1–20 (IntechOpen, 2018). http://doi.org/10.5772/intechopen.74021
  18. Pi, L., Li, L., Liu, K., Zhang, Q. Li, H. & Zhai, T. Recent progress on 2D noble-transition-metal Adv. Funct. Mater. 29, 1904932 (2019). https://doi.org/10.1002/adfm.201904932
  19. Vargas-Bernal, R. Graphene Against Other Two-Dimensional Materials: A Comparative Study on the Basis of Photonic Applications. in Graphene Materials (eds. Kyzas, G. Z. & Mitropoulos, A. Ch.) 103–121 (IntechOpen, 2017). http://doi.org/10.5772/67807
  20. Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Quantum Electron. 68, 100228 (2019). https://doi.org/10.1016/j.pquantelec.2019.100228
  21. Delaunay, P. Y., Nosho, B. Z., Gurga, A. R., Terterian, S. & Rajavel,  D. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL. Proc. SPIE 10177, 101770T-1–12 (2017). https://doi.org/10.1117/12.2266278
  22. Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  23. Lee, D. et al. Law 19 – The Ultimate Photodiode Performance Metric. in Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials 13–15 (2019).
  24. Rogalski, A., Kopytko, M., Martyniuk, P. & Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 28, 82–92 (2020). https://doi.org/10.24425/opelre.2020.132504
  25. Tennant, W. E., Lee, D., Zandian, M., Piquette, E. & Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic. Electron. Mater. 37, 1406–1410 (2008). https://doi.org/10.1007/s11664-008-0426-3
  26. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Adv. 3, e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
  27. Du, S. et al. A broadband fluorographene photodetector. Mater. 29, 1700463 (2017). https://doi.org/10.1002/adma.201700463
  28. Long, M. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511−2519 (2019). https://doi.org/10.1021/acsnano.8b09476
  29. Chen, Y. Unipolar barrier photodetectors based on van der Waals heterostructures. Electron. 4, 357–363 (2021). https://doi.org/10.1038/s41928-021-00586-w
  30. Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). https://doi.org/10.1021/acsnano.7b07028
  31. Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020). https://org/10.1038/s41565-020-0717-2
  32. VIGO System Catalog 2018/2019. VIGO System S.A. https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf (2018).
  33. Mercury Cadmium Telluride Detectors. Teledyne Judson Techno-logies LLC http://www.teledynejudson.com/prods/Documents/MCT_shortform_Dec2002.pdf (2002).
  34. Zhong, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization Nano Res. 14, 1840–1862 (2021). https://doi.org/10.1007/s12274-020-3247-1
  35. Huang, et al. Waveguide integrated black phosphorus photo-detector for mid-infrared applications. ACS Nano 13, 913–921 (2019). https://doi.org/10.1021/acsnano.8b08758
  36. Bullock, J. et al. Polarization-resolved black phosphorus/ molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Photonics 12, 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
  37. Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Commun. 9, 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
  38. Yu, X. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Commun. 9, 4299 (2018). https://doi.org/10.1038/s41467-018-06776-z
  39. Long, M., Wang, P., Fang, H. & Hu. W. Progress, challenges, and opportunities for 2D material-based photodetectors. Funct. Mater. 1803807 (2018). https://doi.org/10.1002/adfm.201803807
  40. Wang, P. et al. Arrayed van der Waals broadband detectors for dual-band detection. Mater. 29, 1604439 (2017). https://doi.org/10.1002/adma.201604439
  41. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Photonics 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
  42. Konstantatos, G. et al. Hybrid graphene-quantum dot photo-transistors with ultrahigh gain. Nanotechnol. 7, 363–368 (2012). https://doi.org/10.1038/nnano.2012.60
  43. Phillips, J. Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590–4594 (2002). https://doi.org/10.1063/1.1455130
  44. Jerram P. & Beletic, J. Teledyne’s high performance infrared detectors for space missions. SPIE 11180, 111803D-2 (2018). https://doi.org/10.1117/12.2536040
  45. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductor. Rev. 44, 3691–3718 2015. https://doi.org/10.1039/C5CS00106D
  46. Wang, J. et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13, 1700894 (2017). https://doi.org/10.1002/smll.201700894
  47. An, J. et al. Research development of 2D materials-based photodetectors towards mid-infrared regime. Nano Select 2, 527 (2021). https://doi.org/10.1002/nano.202000237
  48. Wu, D. et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. Mater. Chem. A 8, 3632–3642 (2020). https://doi.org/10.1039/C9TA13611H
  49. Zeng, L.-H. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Funct. Mater. 29, 1806878 (2019). https://doi.org/10.1002/adfm.201806878
  50. Imec shows excellent performance in ultra-scaled FETs with 2D-material channel. Imec. https://www.imec-int.com/en/articles/imec-shows-excellent-performance-in-ultra-scaled-fets-with-2d-material-channel (2019).
  51. Scaling Up Large-area Integration of 2D Materials. Compound Semiconductor. https://compoundsemiconductor.net/article/112712/Scaling_Up_Large-area_Integration_Of_2D_Materials (2021).
  52. Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019). https://doi.org/10.1088/2053-1583/aaf836
  53. IRDS International Roadmap for Devices and SystemsTM 2018 Update. IEEE. https://irds.ieee.org/images/files/pdf/2018/2018IRDS
    _MM.pdf
    (2018).

Date

11.03.2022

Type

Reviews

Identifier

DOI: 10.24425/opelre.2022.140551
×