Details

Title

Design of external microtextures for efficient light outcoupling in OLEDs with different preferential orientation of emission dipoles

Journal title

Opto-Electronics Review

Yearbook

2022

Volume

30

Issue

2

Affiliation

Kovačič, Milan : Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia

Authors

Keywords

organic light-emitting diode ; light outcoupling ; dipole orientation ; ray tracing ; optical modelling

Divisions of PAS

Nauki Techniczne

Coverage

e141542

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Song, J., Lee, H., Jeong, E.͏͏ G., Choi, K.͏ C. & Yoo, S. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater. 32, 1907539 (2020). https://doi.org/10.1002/adma.201907539
  2. Yin, Y., Ali, M. U., Xie, W., Yang, H. & Meng, H. Evolution of white organic light-emitting devices: from academic research to lighting and display applications. Mater. Chem. Front. 3, 970–1031 (2019). https://doi.org/10.1039/C9QM00042A
  3. Pode, R. Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renew. Sust. Energy Rev. 133, 110043 (2020). https://doi.org/10.1016/j.rser.2020.110043
  4. Chang, Y. & Lu, Z. White organic light-emitting diodes for solid-state lighting. J. Disp. Technol. 9, 459–468 (2013). https://doi.org/10.1109/JDT.2013.2248698
  5. Reineke, S., Thomschke, M., Lüssem, B. & Leo, K. White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 85, 1245–1293 (2013). https://doi.org/10.1103/RevModPhys.85.1245
  6. Hong, G. et al. A brief history of OLEDS—emitter development and industry milestones. Adv. Mater. 33, 2005630 (2021). https://doi.org/10.1002/adma.202005630
  7. Adachi, C., Xie, G., Reineke, S. & Zysman-Colman, E. Editorial: recent advances in thermally activated delayed fluorescence materials. Front. Chem. 8, 625910 (2020). https://doi.org/10.3389/fchem.2020.625910
  8. Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003). https://doi.org/10.1002/adma.200302151
  9. Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012). https://doi.org/10.1103/PhysRevB.85.115205
  10. Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. & Leo, K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl. Phys. Lett. 97, 253305 (2010). https://doi.org/10.1063/1.3527936
  11. Salehi, A., Fu, X., Shin, D.-H. & So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019). https://doi.org/10.1002/adfm.201808803
  12. Gather, M.C. & Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J. Photonics Energy 5, 057607 (2015). https://doi.org/10.1117/1.JPE.5.057607
  13. Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324–3327 (2002). https://doi.org/10.1063/1.1435422
  14. Greiner, H. Light extraction from Organic Light Emitting Diode substrates: simulation and experiment. Jpn. J. Appl. Phys. 46, 4125 (2007). https://doi.org/10.1143/JJAP.46.4125
  15. Bae, H., Kim, J.͏͏ S. & Hong, C. Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array. Opt. Commun. 415, 168–176 (2018). https://doi.org/10.1016/j.optcom.2018.01.044
  16. Zhou, J.-G., Hua, X.-C., Huang, C.-C., Sun, Q. & Fung, M.-K. Ideal microlens array based on polystyrene microspheres for light extraction in organic light-emitting diodes. Org. Electron. 69, 348–353 (2019). https://doi.org/10.1016/j.orgel.2019.03.051
  17. Zhai, G., Zhu, W., Huang, L., Yi, C. & Ding, K. Enhanced light extraction from green organic light-emitting diodes by attaching a high-haze random-bowls textured optical film. J. Phys. D: Appl. Phys. 53, 435101 (2020). https://doi.org/10.1088/1361-6463/ab9fc3
  18. Yen, J.-H., Wang, Y.-J., Hsieh, C.-A., Chen, Y.-C. & Chen, L.-Y. Enhanced light extraction from organic light-emitting devices through non-covalent or covalent polyimide–silica light scattering hybrid films. J. Mater. Chem. C 8, 4102–4111 (2020). https://doi.org/10.1039/C9TC06449D
  19. Gasonoo, A. et al. Outcoupling efficiency enhancement of a bottom-emitting OLED with a visible perylene film. Opt. Express 28, 26724–26732 (2020). https://doi.org/10.1364/OE.397789
  20. Song, J. et al. Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nat. Commun. 9, 3207 (2018). https://doi.org/10.1038/s41467-018-05671-x
  21. Tu, T. T. K. et al. Enhancement of light extraction from Organic Light-Emitting Diodes by SiO2 nanoparticle-embedded phase separated PAA/PI polymer blends. Mol. Cryst. Liq. Cryst. 686, 55–62 (2019). https://doi.org/10.1080/15421406.2019.1648036
  22. Kovačič, M. et al. Coupled optical modeling for optimization of Organic Light-Emitting Diodes with external outcoupling structures. ACS Photonics 5, 422–430 (2018). https://doi.org/10.1021/acsphotonics.7b00874
  23. Kovačič, M. et al. Combined optical model for micro-structured organic light emitting diodes. Inf. MIDEM 46, 167–275 (2017).
  24. Kovačič, M., Jošt, M., Bokalič, M. & Lipovšek, B. Sklopljeno optično modeliranje sodobnih optoelektronskih gradnikov. Elektrotehniski Vestn. 87, 223–234 (2020). http://www.dlib.si/stream/URN:NBN:SI:doc-2H1046ZZ/1ab9d4a8-6aab-40c3-abb5-9d826ff65672/PDF (in Slovene)
  25. Kovačič, M. et al. Analysis and optimization of light outcoupling in OLEDs with external hierarchical textures. Opt. Express 29, 23701–23716 (2021). https://doi.org/10.1364/OE.428021
  26. Lipovšek, B., Krč, J. & Topič, M. Microtextured light-management foils and their optimization for planar organic and perovskite solar cells. IEEE J. Photovolt. 8, 783–792 (2018). https://doi.org/10.1109/JPHOTOV.2018.2810844
  27. Jošt, M. et al. Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics 4, 1232–1239 (2017). https://doi.org/10.1021/acsphotonics.7b00138
  28. Schmidt, T. D. et al. Emitter orientation as a key parameter in Organic Light-Emitting Diodes. Phys. Rev. Appl. 8, 037001 (2017). https://doi.org/10.1103/PhysRevApplied.8.037001
  29. Hofmann, A., Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. Adv. Opt. Mater. 9, 2101004 (2021). https://doi.org/10.1002/adom.202101004
  30. Kim, K.-H. & Kim, J.-J. Origin and control of orientation of phosphorescent and TADF dyes for high‐efficiency OLEDs. Adv. Mater. 30, 1705600 (2018). https://doi.org/10.1002/adma.201705600
  31. Yokoyama, D. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 21, 19187–19202 (2011). https://doi.org/10.1039/C1JM13417E
  32. Schwab, T. et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Adv. Opt. Mater. 1, 707–713 (2013) https://doi.org/10.1002/adom.201300241
  33. Schwab, T., Schubert, S., Müller-Meskamp, L., Leo, K. & Gather, M. C. Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes. Adv. Opt. Mater. 1, 921–925 (2013). https://doi.org/10.1002/adom.201300392
  34. Zhang, W. et al. Rough glass by 3d texture transfer for silicon thin film solar cells. Phys. Status Solidi C 7, 1120–1123 (2010). https://doi.org/10.1002/pssc.200982773
  35. Escarré, J., Söderström, K., Battaglia, C., Haug, F.-J. & Ballif, C. High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications. Sol. Energy Mater. Sol. Cells 95, 881–886 (2011). https://doi.org/10.1016/j.solmat.2010.11.010
  36. Meier, M. et al. UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells. Prog. Photovolt. Res. Appl. 22, 1226–1236 (2014). https://doi.org/10.1002/pip.2382
  37. Xiao, L., Su, S.-J., Agata, Y., Lan, H. & Kido, J. Nearly 100% internal quantum efficiency in an organic blue-light electro-phosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 21, 1271–1274 (2009). https://doi.org/10.1002/adma.200802034
  38. Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013). https://doi.org/10.1002/adma.201300753
  39. Zhang, Q. et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv. Mater. 27, 2096–2100 (2015). https://doi.org/10.1002/adma.201405474
  40. Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998). https://doi.org/10.1364/JOSAA.15.000962
  41. Kovačič, M. Effect of dipole position and orientation on light extraction for red OLEDs on periodically corrugated substrate – FEM simulations study. Inf. MIDEM 51, 73–84 (2021). https://doi.org/10.33180/InfMIDEM2021.105
  42. Lüder, H. & Gerken, M. FDTD modelling of nanostructured OLEDs: analysis of simulation parameters for accurate radiation patterns. Opt. Quantum Electron. 51, 139 (2019). https://doi.org/10.1007/s11082-019-1838-4
  43. Lipovšek, B., Krč, J. & Topič, M. Optical model for thin-film photovoltaic devices with large surface textures at the front side. Inf. MIDEM 41, 264–271 (2011). http://www.midem-drustvo.si/Journal%20papers/MIDEM_41%282011%294p264.pdf
  44. MATLAB – MathWorks (2022). https://www.mathworks.com/products/matlab.html

Type

Article

Identifier

DOI: 10.24425/opelre.2022.141542
×