Details
Title
Evaluation of the protective efficacy of virus-like particles based on PCV 2b and 2d subtypes against mixed challenge in miceJournal title
Polish Journal of Veterinary SciencesYearbook
2022Volume
vol. 25Issue
No 2Authors
Affiliation
Yuan, X.M. : Laboratory of Animal Disease Prevention and Control and Animal model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda road, Furong District, Changsha, 410128, People’s Republic of China ; Yuan, Q.C. : Laboratory of Animal Disease Prevention and Control and Animal model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda road, Furong District, Changsha, 410128, People’s Republic of China ; Feng, S.M. : Laboratory of Animal Disease Prevention and Control and Animal model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda road, Furong District, Changsha, 410128, People’s Republic of China ; Deng, Z.B. : Laboratory of Animal Disease Prevention and Control and Animal model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda road, Furong District, Changsha, 410128, People’s Republic of ChinaKeywords
type 2 ; virus-like particles ; vaccine ; mouseDivisions of PAS
Nauki Biologiczne i RolniczeCoverage
195-205Publisher
Polish Academy of Sciences Committee of Veterinary Sciences ; University of Warmia and Mazury in OlsztynBibliography
Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, Lewis MG, Higgs S, Rossmann MG, Rao S, Nabel GJ (2010) A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med 16: 334-338.
Firth C, Charleston MA, Duffy S, Shapiro B, Holmes EC (2009) Insights into the evolutionary history of an emerging livestock pathogen: porcine circovirus 2. J Virol 83: 12813-12821.
Forstova J, Krauzewicz N, Wallace S, Street A J, Dilworth S M, Beard S, Griffin B E (1993) Cooperation of structural proteins during late events in the life cycle of polyomavirus. J Virol 67: 1405-1413.
Fraile L, Sibila M, Nofrarias M, Lopez-Jimenez R, Huerta E, Llorens A, Lopez-Soria S, Perez D, Segales J (2012) Effect of sow and piglet porcine circovirus type 2 (PCV2) vaccination on piglet mortality, viraemia, antibody titre and production parameters. Vet Microbiol 161: 229-234.
Ge X, Wang F, Guo X, Yang H (2012) Porcine circovirus type 2 and its associated diseases in China. Virus Res 164: 100-106.
Guo L, Fu Y, Wang Y, Lu Y, Wei Y, Tang Q, Fan P, Liu J, Zhang L, Zhang F, Huang L, Liu D, Li S, Wu H, Liu C (2012) A porcine circovirus type 2 (PCV2) mutant with 234 amino acids in capsid protein showed more virulence in vivo, compared with classical PCV2a/b strain. PLoS One 7: e41463.
Guo LJ, Lu YH, Wei YW, Huang LP, Liu CM (2010) Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. Virol J 7: 273.
Hemann M, Beach NM, Meng XJ, Halbur PG, Opriessnig T (2012) Vaccination with inactivated or live-attenuated chimeric PCV1-2 results in decreased viremia in challenge-exposed pigs and may reduce transmission of PCV2. Vet Microbiol 158: 180-186.
Jiang W, Li M, He F, Zhou S, Zhu L (2017) Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 14: 207.
Jourdan N, Godeke G J, Penaud M, Mottola G, Sorrentino A, Rottier P J, Bonatti S (2006) Assembly of HCV E1 and E2 glycoproteins into coronavirus VLPs. Arch Virol 151: 2085-2094.
Kixmoller M, Ritzmann M, Eddicks M, Saalmuller A, Elbers K, Fachinger V (2008) Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine 26: 3443-3451.
Kwon T, Lee DU, Yoo SJ, Je SH, Shin JY, Lyoo YS (2017) Genotypic diversity of porcine circovirus type 2 (PCV2) and genotype shift to PCV2d in Korean pig population. Virus Res 228: 24-29.
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF (2017) Major findings and recent advances in virus- -like particle (VLP)-based vac-cines. Semin Immunol 34: 123-132.
Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS (2000) Open reading frame 2 of porcine circo- virus type 2 encodes a major capsid protein. J Gen Virol 81: 2281-2287.
Opriessnig T, Shen HG, Pal N, Ramamoorthy S, Huang YW, Lager KM, Beach NM, Halbur PG, Meng XJ (2011) A live-attenuated chimeric porcine circovirus type 2 (PCV2) vaccine is transmitted to contact pigs but is not upregulated by concurrent infection with porcine parvovirus (PPV) and porcine reproductive and respira- tory syndrome virus (PRRSV) and is efficacious in a PCV2b-PRRSV-PPV challenge model. Clin Vaccine Immunol 18: 1261-1268.
Palkova Z, Adamec T, Liebl D, Stokrova J, Forstova J (2000) Production of polyomavirus structural protein VP1 in yeast cells and its interac-tion with cell structures. FEBS Lett 478: 281-289.
Ramqvist T, Andreasson K, Dalianis T (2007) Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin Biol Ther 7: 997-1007.
Salunke DM, Caspar DL, Garcea RL (1986) Self-assembly of purified polyomavirus capsid protein VP1. Cell 46: 895-904.
Segales J (2015) Best practice and future challenges for vaccination against porcine circovirus type 2. Expert Rev Vaccines 14: 473-487.
Segales J, Calsamiglia M, Olvera A, Sibila M, Badiella L, Domingo M (2005) Quantification of porcine circovirus type 2 (PCV2) DNA in serum and tonsillar, nasal, tracheo-bronchial, urinary and faecal swabs of pigs with and without postweaning multisystemic wasting syndrome (PMWS). Vet Microbiol 111: 223-229.
Segales J, Martinez-Guino L, Cortey M, Navarro N, Huerta E, Sibila M, Pujols J, Kekarainen T (2009) Retrospective study on swine Torque teno virus genogroups 1 and 2 infection from 1985 to 2005 in Spain. Vet Microbiol 134(3-4): 199-207.
Stewart M, Bhatia Y, Athmaran TN, Noad R, Gastaldi C, Dubois E, Russo P, Thiery R, Sailleau C, Breard E, Zientara S, Roy P (2010) Vali-dation of a novel approach for the rapid production of immunogenic virus-like particles for bluetongue virus. Vaccine 28: 3047-3054.
Szecsi J, Boson B, Johnsson P, Dupeyrot-Lacas P, Matrosovich M, Klenk HD, Klatzmann D, Volchkov V, Cosset FL (2006) Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol J 3: 70.
Wang F, Guo X, Ge X, Wang Z, Chen Y, Cha Z, Yang H (2009) Genetic variation analysis of Chinese strains of porcine circovirus type 2. Virus Res 145: 151-156.
Xiao CT, Halbur PG, Opriessnig T (2012) Complete genome sequence of a novel porcine circovirus type 2b variant present in cases of vac-cine failures in the United States. J Virol 86: 12469.
Xiao CT, Halbur PG, Opriessnig T (2015) Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d. J Gen Virol 96: 1830-1841.
Xiao CT, Harmon KM, Halbur PG, Opriessnig T (2016) PCV2d-2 is the predominant type of PCV2 DNA in pig samples collected in the U.S. during 2014-2016. Vet Microbiol 197: 72-77.
Yang S, Yin S, Shang Y, Liu B, Yuan L, Zafar Khan MU, Liu X, Cai J (2018) Phylogenetic and genetic variation analyses of porcine circovirus type 2 isolated from China. Transbound Emerg Dis 65: e383-e392.
Yuan X, Lin H, Li B, He K, Fan H (2017) Efficacy and immunogenicity of recombinant swinepox virus expressing the truncated S protein of a novel isolate of porcine epidemic diarrhea virus. Arch Virol 162: 3779-3789.
Zhang Y, Wang Z, Zhan Y, Gong Q, Yu W, Deng Z, Wang A, Yang Y, Wang N (2016) Generation of E. coli-derived virus-like particles of porcine circovirus type 2 and their use in an indirect IgG enzyme-linked immunosorbent assay. Arch Virol 161: 1485-1491.