Details

Title

Imaging polarimeter with high-accuracy measuring principles in crystal optics

Journal title

Opto-Electronics Review

Yearbook

2022

Volume

30

Issue

3

Affiliation

Shopa, Mykola : Institute of Physics and Applied Computer Science, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland ; Kobyakov, Serhiy : Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, 5 Dewajtis St., 01-815 Warsaw, Poland ; Shopa, Yaroslav : Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, 5 Dewajtis St., 01-815 Warsaw, Poland

Authors

Keywords

birefringence ; crystal optics ; high-accuracy universal polarimeter ; imaging polarimeter ; polarization

Divisions of PAS

Nauki Techniczne

Coverage

e141948

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Tyo, J. , Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006). https://doi.org/10.1364/AO.45.005453
  2. Chipman, R. , Lam, W.-S. T. & Young, G. Polarized Light and Optical Systems (Boca Raton, CRC Press. 2018) https://doi.org/10.1201/9781351129121
  3. Azzam, R. A. Stokes-vector and Mueller-matrix polarimetry [Invited]. J. Opt. Soc. Am. A. 33, 1396–1408 (2016). http://doi.org/10.1364/JOSAA.33.001396
  4. Goldstein, D. Polarized light (3rd ed.) Ch. 5–6 (Boca Raton, CRC press, 2017). https://doi.org/10.1201/b10436
  5. Pezzaniti, J. & Chipman, R. A. Mueller matrix imaging polarimetry. Opt. Eng. 34, 1558–1568 (1995). https://doi.org/10.1117/12.206161
  6. Shribak, M. & Oldenburg, R. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Opt. 42, 3009–3017 (2003). https://doi.org/10.1364/AO.42.003009
  7. Shribak, M. Polychromatic polarization microscope: bringing colors to a colorless world. Rep. 5, 17340 (2015). https://doi.org/10.1038/srep17340
  8. Geday, M. , Kaminsky, W., Lewis, J. G. & Glazer, A. M. Images of absolute retardance L·Δn, using the rotating polariser method. J. Microsc. 198, 1–9 (2000). https://doi.org/10.1046/j.1365-2818.2000.00687.x
  9. Oka, K. & Kaneko, T. Compact complete imaging polarimeter using birefringent wedge prisms. Express 11, 1510–1519 (2003). https://doi.org/10.1364/OE.11.001510
  10. Rubin, N. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, 43–52 (2019). https://doi.org/10.1126/science.aax1839
  11. Gottlieb, D. & Arteaga, O. Mueller matrix imaging with a polarization camera: application to microscopy. Express. 29, 34723–34734 (2021). https://doi.org/10.1364/OE.439529
  12. Sasagawa, K. et al. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology. Express. 21, 11132–11140 (2013). https://doi.org/10.1364/OE.21.011132
  13. Hagen, N. , Shibata, S. & Otani, Y. Calibration and performance assessment of microgrid polarization cameras. Opt. Eng. 58, 082408 (2019). https://doi.org/10.1117/1.OE.58.8.082408
  14. Kaminsky, W., Claborn, K. & Kahr, B. Polarimetric imaging of crystals. Chem. Rev. 33, 514–525 (2004). http://doi.org/10.1039/b201314m
  15. Takanabe, A., Koshima, H. & Asahi, T. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer. AIP Adv. 7, 025209 (2017). https://doi.org/10.1063/1.4977440
  16. Op Amp Applications Handbook (ed. Yung, W. G.) (Analog Devices, 2002). http://www.miedema.dyndns.org/co/2018/Op_Amp_Applications_Handbook-Walt-Jung_2005.pdf
  17. Kobayashi, J. & Uesu, Y. A new optical method and apparatus HAUP for measuring simultaneously optical activity and birefringence of crystals. I. Principles and construction. Appl. Crystallogr. 16, 204–211 (1983). https://doi.org/10.1107/S0021889883010262
  18. Hernández-Rodríguez, C., Gomez-Garrido, P. & Veintemillas, S. Systematic errors in the high-accuracy universal polarimeter: application to the determining temperature-dependent optical anisotropy of KDC and KDP crystals. Appl. Crystallogr. 33, 938–946 (2000). http://doi.org/10.1107/S0021889800003605
  19. Stangner, T., Zhang, H., Dahlberg, T., Wiklund, K. & Andersson, M. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser. Opt. 56, 5427–5435 (2017). https://doi.org/10.1364/AO.56.005427
  20. Bennett, J. Polarization. in Handbook of Optics (eds. Bass, M., Van Stryland, E .W., Wolfe, W. L. & Williams, D.R.) vol. 1, Ch 5 (McGraw-Hill, 1995).
  21. Bennett, J. Polarizers. in Handbook of Optics (eds. Bass, M., Van Stryland, E. W., Wolfe, W. L. & Williams, D. R.) vol. 2, Ch. 3 (McGraw-Hill, 1995).
  22. Zhou, K., Simpson, G., Chen, X., Zhang, L. & Bennion, I. High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings. Lett. 30, 1285–1287 (2005). https://doi.org/10.1364/OL.30.001285
  23. Ratajczyk, F. Generalized Malus law. Appl. 9, 281–283 (1979). https://opticaapplicata.pwr.edu.pl/files/pdf/1979/no4/optappl_904p281.pdf
  24. Takubo, Y., Takeda, N., Huang, J. , Muroo, K. & Yamamoto, M. Precise measurement of the extinction ratio of a polarization analyser Meas. Sci. Technol. 9, 20–23 (1998). https://doi.org/10.1088/0957-0233/9/1/004
  25. Mei, H.-H., Chen, Sh.-J. & Ni, W.-T. Suspension of the fiber mode-cleaner launcher and measurement of the high extinction-ratio (10−9) ellipsometer for the Q & A experiment. Phys. Conf. Ser. 32, 236–243 (2006). https://doi.org/10.1088/1742-6596/32/1/035
  26. Shopa, Y., Shopa, M. & Ftomyn, N. Dual-wavelength laser polarimeter and its performance capabilities. Opto-Electron. Rev. 25, 6–9 (2017). http://doi.org/10.1016/j.opelre.2017.01.001
  27. Yariv, A. & Yeh, P. Optical Waves in Crystals: Propagation and Control of Laser Radiation. (Wiley, 2002).
  28. Shopa, M., Ftomyn, N. & Shopa, Y. Dual-wavelength polarimeter application in investigations of the optical activity of a langasite crystal. Opt. Soc. Am. A 34, 943–948 (2017). https://doi.org/10.1364/JOSAA.34.000943
  29. Shopa, M. & Ftomyn, N. Application of two-dimensional intensity maps in high-accuracy polarimetry. Opt. Soc. Am. A 36, 485–491 (2019). https://doi.org/10.1364/josaa.36.000485
  30. Hernández-Rodríguez, C. & Gomez-Garrido, P. Optical anisotropy of quartz in the presence of temperature-dependent multiple reflections using a high-accuracy universal polarimeter. Phys. D 33, 2985–2994 (2000). https://doi.org/10.1088/0022-3727/33/22/318
  31. Konstantinova, A. , Evdishchenko, E. A. & Imangazieva, K. B. Manifestation of optical activity in crystals of different symmetry classes. Crystallogr. Rep. 51, 998–1008 (2006). https://doi.org/10.1134/S1063774506060113
  32. Crystal polarizers, Thorlabs, Inc. https://www.thorlabs.com/navigation.cfm?guide_id=2458 (2022).
  33. Shribak, M., Otani, Y. & Yoshizawa, T. Return-path polarimeter for two-dimensional birefringence distribution measurement. SPIE. 3754, 144–149 (1999). https://doi.org/10.1117/12.366325
  34. Noguchi, M., Ishikawa, T., Ohno, M. & Tachihara, S. Measurement of 2D birefringence distribution. SPIE. 1720, 367–378 (1992). https://doi.org/10.1117/12.132143
  35. Otani, Y., Shimada, T., Yoshizawa, T. & Umeda, N. Two-dimensional birefringence measurement using the phase shifting technique. Eng. 33, 1604–1609 (1994). https://doi.org/10.1117/12.168435

Date

29.06.2022

Type

Article

Identifier

DOI: 10.24425/opelre.2022.141948
×