Details
Title
Characterization of Ijero-Ekiti Quartz as Refractory Raw Material for Industrial FurnaceJournal title
Archives of Foundry EngineeringYearbook
2023Volume
vol. 23Issue
No 4Authors
Affiliation
Omidiji, B.V. : Obafemi Awolowo University, Ile-Ife, Nigeria ; Owolabi, H.A. : Obafemi Awolowo University, Ile-Ife, Nigeria ; Ogundipe, O.B. : Landmark University, Omu-Aran, NigeriaKeywords
quartz ; refractory materials ; Industrial furnace ; thermal properties ; chemical compositionDivisions of PAS
Nauki TechniczneCoverage
14-21Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Jongs, L.S., Jock, A.A., Ekanem, O.E. & Jauro, A. (2018). Investigating the industrial potentials of some selected Nigerian clay deposits. Journal of Minerals and Materials Characterization and Engineering. 6, 569-586. DOI: 10.4236/jmmce.2018.66041.[2] Adeoti, M., Dahunsi, O., Awopetu, O.O., Aramide, F., Alabi, O., Johnson, O. & Abdulkarim, A. (2019). Suitability of selected Nigerian clays for foundry crucibles production. Procedia Manufacturing. 35, 1316-1323. https://doi.org/10.1016/j.promfg.2019.05.023.
[3] Thethwayo, B. & Steenkamp, J. (2020). A review of carbon-based refractory materials and their applications. Journal of the Southern African Institute of Mining and Metallurgy. 120, 641-650. http://dx.doi.org/10.17159/2411-9717/1011/2020.
[4] Fleuriault, C., Grogan, J. & White, J. (2018). Refractory materials for metallurgical Uses. The Journal of The Minerals, Metals & Materials Society. 70, 2420-2421. https://doi.org/10.1007/s11837-018-3096-5.
[5] Sarkar, R. (2016). Refractory technology: Fundamentals and applications. CRC Press, Boca Raton, Florida, United State.
[6] Lee, S. (2015). Types of Refractory Materials and their Applications [Online]. Linkedin. Available: https://www.linkedin.com/pulse/types-refractory-materials-applications-le-sylvia [Accessed June 16 2021]
[7] MARKETS AND MARKETS. (2020). Refractories Market by Form (Shaped Refractories, Unshaped Refractories), Alkalinity (Acidic & Neutral. Basic), End-Use Industry (Iron & Steel, Power Generation, Non-Ferrous Metals, Cement, Glass), and Region - Global Forecast to 2025 [Online]. MARKETSANDMARKETS. Available: https://www.marketsandmarkets.com/Market-Reports/refractories-market-222632393.html?gclid=CjwKCAjwiLGGBhAqEiwAgq3q_mu5-rTCddXNmL2Po9LaVwDTS2rVmPj8dfITLtQzmA4u7BCHkVKZ-RoCur0QAvD_BwE [Accessed June 16 2021].
[8] Ren, C. & Enneti, R.K. (2020). Process design and material development for high-temperature applications. The Journal of The Minerals, Metals & Materials Society. 72. 4028-4029. https://doi.org/10.1007/s11837-020-04381-4.
[9] Patel, N. (2013). Factors affecting the lifespan of cast refractory linings: a general overview. Journal of the Southern African Institute of Mining and Metallurgy. 113, 637-641.
[10] Oyeyemi, A.O., Adekola, F.A., & Olaleye, M.B. (2016). Characterization of Ijero-Ekiti kaolin for industrial applications. Journal of Minerals and Materials Characterization and Engineering. 5(3), 153-160. https://doi.org/10.4236/jmmce.2016.53018.
[11] Adeniyi, F.I., Ogundiran, M.B., Hemalatha, T. & Hanumantrai, B.B. (2020). Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques. SN Applied Sciences. 2, 1-14. https://doi.org/10.1007/s42452-020-2610-x.
[12] Kralik, G., Martins, K.V., Alves, J.R., Sartori, D.V., Scholz, R. & Corat, E.J. (2016). Characterization and utilization of quartz sands in the manufacture of silicon metal. Journal of Cleaner Production. 112, 3304-3311. https://doi.org/10.1016/j.jclepro.2015.06.108.
[13] Guan, Y., Zhang, X., Chen, J. & Wang, L. (2018). Study on thermal shock resistance and high-temperature behavior of quartz-feldspar refractory materials. Journal of the American Ceramic Society. 101(4), 1467-1475. https://doi.org/10.1111/jace.14900.
[14] Zhou, C., Gao, X., Xu, Y., Buntkowsky, G., Ikuhara, Y., Riedel, R., & Ionescu, E. (2015). Synthesis and high-temperature evolution of single-phase amorphous Si–Hf–N ceramics. Journal of the European Ceramic Society. 35(7), 2007-2015. https://doi.org/10.1016/j.jeurceramsoc.2015.01.026.
[15] ASTM C201-93(2019). Standard test method for thermal conductivity of refractories. ASTM International, West Conshohocken, PA, United State.
[16] ASTM C114-22 (2022). Standard test methods for chemical analysis of hydraulic cement. ASTM International, West Conshohocken, PA, United State.
[17] Griffiths, P.R. & De Haseth, J.A. (1986). Fourier transform infrared spectrometry. John Wiley & Sons; New York, United State.
[18] Stodghill, S.P. (2010). Thermal analysis - A review of techniques and applications in the pharmaceutical sciences. American Pharmaceutical Review. 13(2), 29-36.
[19] Craig, D.Q.M., Reading, M. (2007). Thermal analysis of pharmaceuticals. CRC Press, Taylor and Francis Group, Boca Raton, Florida, United State.
[20] Drábik, M. (2017). The challenge of methods of thermal analysis in solid state and materials chemistry. Pure and Applied Chemistry. 89(4), 451-459.
[21] Drabik, M. & Slade, R.C. (2004). Macrodefect-free materials: modification of interfaces in cement composites by polymer grafting. Interface Science. 12(4), 375-379. https://doi.org/10.1023/B:INTS.0000042335.65518.11.
[22] Mojumdar, S.C., Mazanec, K. & Drabik, M. (2006). Macro-defect-free (MDF) cements. Journal of Thermal Analysis and Calorimetry. 83(1), 135-139.
[23] Drábik, M. (2009). Contribution of materials chemistry to the knowledge of macro-defect-free (MDF) materials. Pure and Applied Chemistry. 81(8), 1413-1421. https://doi.org/10.1351/PAC-CON-08-07-16.
[24] Drabik, M., Billik, P. & Galikova, L. (2012). Macro defect free materials; the challenge of mechanochemical activation. Ceramics-Silikáty. 56(4), 396-401. https://doi.org/10.1007/s10973-005-7045-5.
[25] Ahmed, Y.E., Abdulaziz, A.A., Hamid, M.S., Anesh, M.P., Saeed, M.A., Arfat, A. & Mohammad, I.A. (2019). Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Applied Science. 9(6), 1-18. https://doi.org/10.3390/app9061149.
[26] Ajala, A.J. & Badarulzaman, N.A. (2016). Thermal conductivity of Aloji fireclay as refractory material. International Journal of Integrated Engineering. 8(2), 16-20.
[27] Vaishnav, H., Navin, K., Kurchania, R. & Ball, R.J. (2022). Synthesis of ZrO2 based nanofluids for cooling and insulation of transformers. IEEE Transactions on Dielectrics and Electrical Insulation. 29(1), 199-205. DOI: 10.1109/TDEI.2022.3148444.
[28] Ajiboye, T.K., Fabiyi, M.O., Mustapha, N. & Abdulkareem, S. (2022). Characterization of clay and granite dust blends as novel materials for energy storage and diffuser in constructing solar flat-plate collector. Tanzania Journal of Science. 48(2), 283-293.
[29] Ritz, M., Vaculíková, L. & Plevová, E. (2010). Identification of clay minerals by infrared spectroscopy and discriminant analysis. Society for Applied spectroscopy. 64(12) 1379-1387.
[30] Yue, C., Liu, J., Zhang, H., Dai, L., Wei, B. & Chang, C. (2018). Increasing the hydrophobicity of filter medium particles for oily water treatment using coupling agents. Heliyon. 4(9), 1-14. DOI: 10.1016/j.heliyon.2018.e00809.
[31] Zaitan, H., Bianchi, D., Achak, O. & Chafik, T. (2008). A comparative study of the adsorption and desorption of o-xylene onto bentonite clay and alumina. Journal of Hazardous Materials. 153(1-2), 852-859. https://doi.org/10.1016/j.jhazmat.2007.09.070.
[32] Gao, J., Jiang, C. & Zhang, X. (2007). Kinetics of curing and thermal degradation of POSS epoxy resin/DDS system. International Journal of Polymeric Materials and Polymeric Biomaterials. 56(1), 65-77. https://doi.org/10.1080/00914030600710620.
[33] Odewole, P.O., Kashim, I.B. & Akinbogun, T.L. (2019). Production of refractory porcelain crucibles from local ceramic raw materials using slip casting. International Journal of Engineering and Manufacturing. 9(5), 56-69. DOI: 10.5815/ijem.2019.05.05.
[34] Oluwagbenga, O.P. & Majiyebo, A.E. (2019). Development of aluminosilicate refractory crucibles from the optimum mix of Awo quartz and Ikere Ekiti clays. ATBU Journal of Science, Technology and Education. 7(2), 331-340.
[35] Shuaib-Babata, Y.L., Ibrahim, H.K., Ajao, K.S., Elakhame, Z.U., Aremu, N.I. & Odeniyi, O.M. (2019). Assessment of physico-mechanical properties of clay deposits in Asa Local Government Area of Kwara State Nigeria for industrial applications. Journal of Research Information in Civil Engineering. 16(2), 2727-2753.
[36] Aremu, D.A., Aremu, J.O. & Ibrahim, U.H. (2013). Analysis of Mubi clay deposit as furnace lining. International Journal of Scientific and Technology. 2(12), 183-186.
[37] Olajide, O.I., Michael, O.B. & Terna, T.D. (2015). Production and characterization of aluminosilicate refractory brick using Unwana beach silica sand, Ekebedi and Unwana clays. British Journal of Applied Science & Technology. 5(5), 461-471.
[38] Osabor, V.N., Okafor, P.C., Ibe, K.A. & Ayi, A.A. (2009). Characterization of clays in Odukpani, south eastern Nigeria. African Journal of Pure and Applied Chemistry. 3(5), 79-85. ISSN 1996 – 0840.
[39] Tenimu, A.A. (2019). Thermogravimetric and differential thermal investigation of rice husk cellulose. Bayero Journal of Pure and Applied Sciences. 12(1), 6-11. http://dx.doi.org/10.4314/bajopas.v12i1.2.
[40] Amkpa, J.A. & Badarulzaman, N.A. (2016). Thermal conductivity of Aloji fireclay Brick. International Journal of Integrated Engineering. 8(3), 16-20.
[41] Silva, K.R, Liszandra, F.A., Camposb, L.N. & Santanaa, D.L. (2019). Use of experimental design to evaluate the effect of the incorporation of quartzite. residues in ceramic mass for porcelain tile production. Materials Research. 22(1), 1-11. https://doi.org/10.1590/1980-5373-MR-2018-0388.
[42] Czichos, H., Saito, T., Smith, L.E. (2011). Springer handbook of metrology and testing. Springer, New York, United State.
[43] Navas, V. G., Sandá, A., Sanz, C., Fernández, D., Vleugels, J., Vanmeensel, K., & Fernández, A. (2015). Surface integrity of rotary ultrasonic machined ZrO2–TiN and Al2O3–TiC–SiC ceramics. Journal of the European Ceramic Society, 35(14), 3927-3941. https://doi.org/10.1016/j.jeurceramsoc.2015.06.018.
[44] Palm, M. & Inden, G. (1995). Experimental determination of phase equilibria in the Fe Al C system. Intermetallics. 3(6), 443-454. https://doi.org/10.1016/0966-9795(95)00003-H.
[45] Wulf, R., Barth, G. & Gross, U. (2007). Intercomparison of insulation thermal conductivities measured by various methods. International Journal of Thermophysics, 28, 1679-1692. https://doi.org/10.1007/s10765-007-0278-8.
[46] Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S. (2007). Fundamentals of heat and mass transfer. John Wiley & Sons; New York, United State.
[47] Hagemann, L. & Peters, E. (1982). Thermal Conductivity- comparison of methods: ASTM-method, hot wire method and its variations. Interceram. 31, 131-135.
[48] Ferber, M.K., Weresczak, A.A. & Hemrick, J.G. (2006). Comprehensive creep and thermophysical performance of refractory materials. United States. DOI:10.2172/885151.
[49] Litovsky, E., Kleiman, J.I. & Menn, N. (2003). Measurement and analysis by different methods of apparent, radiative, and conductive thermophysical properties of insulation materials. High Temperatures-High Pressures. 35(1), 101-108. DOI:10.1068/htjr080.
[50] Arthur, E.K. & Gikunoo, E. (2020). Property analysis of thermal insulating materials made from Ghanaian anthill clay deposits. Cogent Engineering. 7(1), 1-20. https://doi.org/10.1080/23311916.2020.1827493.