Details

Title

Flow Effect on Si Crystals and Mn-Phases in Hypereutectic and Eutectic Al-Si-Mn Alloys

Journal title

Archives of Foundry Engineering

Yearbook

2023

Volume

vol. 23

Issue

No 4

Authors

Affiliation

Mikołajczak, Piotr : Poznan University of Technology, Poland

Keywords

Casting microstructure ; aluminum alloys ; Electromagnetic stirring ; Solidification ; Si crystals ; Mn-phases

Divisions of PAS

Nauki Techniczne

Coverage

72-86

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Mondolfo, L.F. Aluminium Alloys: Structure and Properties. London: Butterworths & Co.: UK, 1976.
[2] Nong, G. (Ed.). Aluminum Alloys. MDPI. Switzerland, 2018.
[3] Mikolajczak, P. & Ratke, L. (2014). Three Dimensional Morphology of Mn Rich Intermetallics in AlSi Alloys Investigated with X-Ray Tomography. Materials Science Forum - Solidification and Gravity SolGrav VI., Miskolc. 790-791, 335-340. https://doi.org/10.4028/ www.scientific.net/MSF.790-791.335.
[4] Das, A., Ji, S., Fan, Z. (2002). Solidification microstructures obtained by a novel twin screw liquidus casting method. In Proceedings of the 7th International Conference on Demi-Solid Processing of Alloys and Composites,25–27 September 2002 (pp. 689-694). Tsukuba, Japan.
[5] Zhang, Y., Patel, J.B., Lazaro-Nebreda, J. & Fan, Z. (2018). Improved defect control and mechanical property variation in high-pressure die casting of A380 alloy by high shear melt conditioning. JOM. 70, 2726-2730. https://doi.org/10.1007/s11837-018-3005-y.
[6] Sree Manu, K.M., Barekar, N.S., Lazaro-Nebreda, Patel, J.B. & Fan, Z. (2021). In-situ microstructural control of A6082 alloy to modify second phase particles by melt conditioned direct chill (MC-DC) casting process – A novel approach. Journal of Materials Processing Technology. 295, 117170. https://doi.org/10.1016/j.jmatprotec.2021.117170.
[7] Brollo, G.L., Proni, C.T.W. & Zoqui, E.J. (2018). Thixoforming of an Fe-Rich Al-Si-Cu Alloy—thermodynamic characterization, microstructural evolution, and rheological behavior. Metals. 8, 332. https://doi.org/10.3390/met8050332.
[8] Haga T. & Suziki, S. (2001). Casting of aluminum alloy ingots for thixoforming using a cooling slope. Journal of Materials Processing Technology. 118(1-2), 169-172. https://doi.org/10.1016/S0924-0136(01)00888-3.
[9] Wang, H., Davidson, C.J. & St. John, D.H. (2004). Semisolid microstructural evolution of AlSi7Mg during partial remelting. Materials Science and Engineering: A. 368(1-2), 159-167. https://doi.org/10.1016/j.msea.2003.10.305.
[10] Eslami, M., Payandeh, M., Deflorian, F. & Jarfors, A.E.W., Zanella, C. (2018). Effect of segregation and surface condition on corrosion of Rheo-HPDC Al–Si alloys. Metals. 8, 209. https://doi.org/10.3390/met8040209.
[11] Mohammed, M.N., Omar, M.Z., Al-Zubaidi, S., Alhawari, K.S. & Abdelgnei, M.A. (2018). Microstructure and mechanical properties of thixowelded AISI D2 tool steel. Metals. 8, 316. https://doi.org/10.3390/met8050316.
[12] Flemings, M. (1991). Behavior of metal alloys in the semisolid state. Metallurgical Transactions B. 22B, 269-293. https://doi.org/10.1007/BF02651227.
[13] Modigell, M., Pola, A. & Tocci, M. (2018). Rheological characterization of semi-solid metals: a review. Metals. 8, 245. https://doi.org/10.3390/met8040245.
[14] Li, Y., Zhou, R., Li, L., Xiao, H. & Jiang, Y. (2018). Microstructure and properties of semi-solid ZCuSn10P1 alloy processed with an enclosed cooling slope channel. Metals. 8, 275. https://doi.org/10.3390/met8040275.
[15] Jiang, J., Xiao, G., Che, C. & Wang, Y. (2018). Microstructure, mechanical properties and wear behavior of the rheoformed 2024 aluminum matrix composite component reinforced by Al2O nanoparticles. Metals. 8, 460. https://doi.org/10.3390/met8060460.
[16] He, M., Zhang, Z., Mao, W., Li, B., Bai, Y. & Xu, J. (2019). Numerical and experimental study on melt treatment for large-volume 7075 alloy by a modified annular electromagnetic stirring. Materials. 12, 820. https://doi.org/10.3390/ma12050820.
[17] Nakato, H., Oka, M., Itoyama, S., Urata, M., Kawasaki, T., Hashiguchi, K. & Okano, S. (2002). Continuous semi-solid casting process for aluminum alloy billets. Materials Transactions. 43, 24-29. https://doi.org/10.2320/matertrans.43.24.
[18] Mikolajczak, P., Janiszewski, J. & Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Gapiński B., Szostak M., Ivanov V. (Eds.), Advances in manufacturing II. Vol. 4. Mechanical Engineering (pp. 164-175). Cham, Switzerland, Springer. https://doi.org/10.1007/978-3-030-16943-5_15.
[19] Mikolajczak, P. (2023). Distribution and Morphology of α-Al, Si and Fe-Rich Phases in Al–Si–Fe Alloys under an Electromagnetic Field. Materials. 16, 3304. https://doi.org/10.3390/ma16093304.
[20] Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals. 7, 89. https://doi.org/10.3390/met7030089.
[21] Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11, 1804. https://doi.org/10.3390/met11111804.
[22] Mikolajczak, P. & Ratke, L. (2015). Thermodynamic assessment of mushy zone in directional solidification. Archives of Foundry Enginering. 15(4), 101-109. DOI: 10.1515/afe-2015-0088.
[23] Belov, N.A., Aksenov, A.A., Eskin, D.G. (2002). Iron in Aluminium Alloys—Impurity and Alloying Element. 1st ed. London, UK: Taylor and Francis Group. https://doi.org/10.1201/9781482265019.
[24] Shabestari, S.G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Materials Science and Engineering: A. 383(2), 289-298. https://doi.org/10.1016/j.msea.2004.06.022.
[25] Thermo-Calc 4.1—Software package from Thermo-Calc Software AB. Stockholm. Sweden. Retrieved June 10, 2023, from www.thermocalc.se.
[26] Fang, X., Shao, G., Liu, Y.Q. & Fan. Z. (2007). Effects of intensive forced melt convection on the mechanical properties of Fe containing Al-Si based alloys. Materials Science and Engineering: A. 445-446, 65-72. https://doi.org/10.1016/j.msea.2006.09.038.
[27] Nafisi, S., Emad, D., Shehata, T. & Ghomashchi, R. (2006). Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Materials Science and Engineering: A. 432(1-2), 71-83. https://doi.org/10.1016/j.msea.2006.05.076.
[28] Steinbach, S., Euskirchen, N., Witusiewicz, V., Sturz, L. & Ratke, L. (2007). Fluid flow effects on intermetallic phases in Al-cast alloys. Transactions of Indian Institute of Metals. 60(2), 137-141. https://doi.org/10.4028/www.scientific.net/ MSF.519-521.1795.
[29] Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26, 339-353. https://doi.org/10.1179/1743133613Y.0000000069.
[30] Jie, J.C., Zou, Q.C., Wang, H.W., Sun, J.L. & Lu, Y.P., Wang, T.M., Li, T.J. (2014). Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field. Journal of Crystal Growth. 399, 43-48. http://dx.doi.org/10.1016/j.jcrysgro.2014.04.003.
[31] Wenzhou, Y., Wenhui, M., Guoqiang, L., Haiyang, X., Li, S. & Dai, Y. (2014). Efect of electromagnetic stirring on the enrichment of primary silicon from Al-Si melt. Journal of Crystal Growth. 405, 23-28. http://dx.doi.org/ 10.1016/j.jcrysgro.2014.07.035.
[32] Ma, X., Lei, Y., Yoshikawa, T., Zhao, B. & Morita, K. (2015). Effect of solidification conditions on the silicon growth and refining using Si-Sn melt. Journal of Crystal Growth. 430, 98-102. http://dx.doi.org/10.1016/ j.jcrysgro.2015.08.001.
[33] Zhu, K., Hu, J., Ma, W., Wei, K., Lv, T. & Dai, Y.(2019). Effect of solidification parameters and magnetic field on separation of primary silicon from hypereutectic Ti-85 wt.% Si melt. Journal of Crystal Growth. 522, 78-85. https://doi.org/10.1016/j.jcrysgro.2019.05.012. [34] Li, Y., Liu, L. & Chen, J. (2021). Effect of mechanical stirring on silicon purification during Al-Si solvent refining. Journal of Crystal Growth. 553, 125943. https://doi.org/10.1016/j.jcrysgro.2020.125943
[35] Ban, B., Li, Y., Zou, Q., Zhang, T., Chen, J. & Dai, S. (2015). Refining of metallurgical grade Si by solidification of Al-Si melt under electromagnetic stirring. Journal of Materials Processing Technology. 222, 142-147. http://dx.doi.org/10.1016/j.jmatprotec.2015.03.012.
[36] Zhang, Y., Miao, X., Shen, Z., Han, Q., Song, C. & Zhai, Q. (2015). Macro segregation formation of the primary silicon phase in directionally solidified Al-Si hypereutectic alloys under the impact of electric currents. Acta Materialia. 97, 357-366. http://dx.doi.org/10.1016/j.actamat.2015.07.002. [37] Li, J., Ni, P., Wang, L. & Tan, Y. (2017). Influence of direct electric current on solidification process of Al-Si alloy. Materials Science Semiconductor Processing. 61, 79-84. http://dx.doi.org/10.1016/j.mssp.2016.12.034.
[38] Lv, G., Bao, Y., Zhang, Y., He, Y., Ma, W. & Leu, Y. (2018). Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al-Si alloy with high Si content. Materials Science Semiconductor Processing. 81, 139-148. https://doi.org/10.1016/ j.mssp.2018.03.006.
[39] Yoshikawa, T. & Morita, K. (2005). Refining of Si by the solidification of Si-Al melt with electromagnetic force. ISIJ International. 45, 7, 967-971. https://doi.org/10.2355/ isijinternational.45.967.
[40] Huang, F., Zhao, L., Liu, L., Hu, Z., Chen, R. & Dong, Z. (2019). Separation and purification of Si from Sn-30Si alloy by electromagnetic semi-continuous directional solidification. Materials Science in Semiconductor Processing. 99, 54-61. https://doi.org/10.1016/ j.mssp.2019.04.015.
[41] He, Y., Yang, X., Duan, L., Li, S., Chen, Z., Ma, W., Lv, G. & Xing, A. (2021). Silicon separation and purification process from hypereutectic aluminum-silicon for organosilicon use. Materials Science in Semiconductor Processing. 121, 105333. https://doi.org/10.1016/ j.mssp.2020.105333.
[42] Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phases during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10. https://doi.org/10.3390/ma12010010.
[43] Xue, H., Lv, G., Ma, W., Chen, D. & Yu, J. (2015). Separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields. Metallurgical and Materials Transactions A. 46, 2922-2932. DOI: 10.1007/s11661-015-2889-1.
[44] Li, X., Ren, Z. & Fautrelle, Y. (2009). Effect of a high magnetic field on the distribution of the solute Si and the morphology of the primary Si phase. Materials Letters. 63, 1235-1238. doi:10.1016/j.matlet.2009.02.030.
[45] Sun, Jl., Zou, Qc., Jie, Jc. & Li, T. (2016). Separation of primary Si and impurity boron removal from Al-30%Si-10%Sn melt under a traveling magnetic field. China Foundry. 13, 4, 284-288. https://doi.org/10.1007/s41230-016-6036-4.
[46] Zou, Q., Tian, H., Zhang, Z., Sun, C., Jie, J., Han, N. & An, X. (2020). Controlling segregation behaviour of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Metals. 10, 1129. https://doi.org/10.3390/met10091129.
[47] Zou, Q., Han, N., Zhang, Z., Jie, J., Xu, F. & An, X. (2020). Enhancing segregation behaviour of impurity by electromagnetic stirring in the solidification process of Al-30Si alloy. Metals. 10, 155. doi:10.3390/met10010155.
[48] Zou, Q., Jie, J., Wang, T. & Li, T. (2016). An efficient method to purify metallurgical grade Si by electromagnetic semi-continuous casting of Al-30Si melt. Materials Letters. 185, 59-62. http://dx.doi.org/10.1016/j.matlet.2016.08.103.
[49] Kurz, W., Fisher, D.J. Fundamentals of Solidification. Switzerland: Trans Tech Publications.
[50] Dantzig, J.A., Rappaz, M. (2009). Solidification. Lausanne, Switzerland: EPFL Press.
[51] Stefanescu, D. (2009). Science and Engineering of Casting and Solidification. Boston, MA, USA: Springer. https://doi.org/10.1007/b135947.
[52] Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
[53] Martinez, R.A. & Flemings, M.C. (2005). Evolution of particle morphology in semisolid processing. Metallurgical and Materials Transactions A. 36, 2205-2210. https://doi.org/10.1007/s11661-005-0339-1.
[54] Niroumand, B. & Xia, K. (2000). 3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Materials Science and Engineering A. 283(1-2), 70-75. https://doi.org/10.1016/S0921-5093(00)00619-5.
[55] Birol, Y. (2007). A357 thixoforming feedstock produced by cooling slope casting. Journal of Materials Processing Technology. 186(1-3), 94-101. https://doi.org/10.1016/ j.jmatprotec.2006.12.021.
[56] Das, A., Ji, S. & Fan, Z. (2002). Morphological development of solidification structures under forced fluid flow: A Monte Carlo simulation. Acta Materialia. 50(18), 4571-4585. https://doi.org/10.1016/S1359-6454(02)00305-1.
[57] Li, T., Lin, X. & Huang, W. (2006). Morphological evolution during solidification under stirring. Acta Materialia. 54, 4815-4824. https://doi.org/10.1016/ j.actamat.2006.06.013.
[58] Mullis, A. (1999). Growth induced dendritic bending and rosette formation during solidification in a shearing flow. Acta Materialia. 47, 1783-1789. https://doi.org/10.1016/ S1359-6454(99)00052-X.
[59] Marsh, S.P. & Glicksman, M.E. (1996). Overview of geometric effects on coarsening of mushy zones. Metallurgical and Materials Transactions A. 27, 557-567. https://doi.org/10.1007/BF02648946.
[60] Loué, W.R. & Suéry, M. (1995). Microstructural evolution during partial remelting of AlSi7Mg alloys. Materials Science and EngineeringA A. 203(1-2), 1-13. https://doi.org/10.1016/0921-5093(95)09861-5.
[61] Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. The Minerals, Metals & Materials Society. TMS. 10, 9781118062173. https://doi.org/10.1002/9781118062173.ch104.

Date

2023.12.11

Type

Article

Identifier

DOI: 10.24425/afe.2023.146681
×